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ABSTRACT

Modern day wireless network applications exhibit varying service demands

to satisfy user requirements, while differing in the nature of traffic they gen-

erate. Future wireless networks should, therefore, be capable of adapting to

the heterogeneous traffic characteristics, by efficiently utilizing the expen-

sive radio resources. In this dissertation, we concentrate on three important

problems in existing wireless networks and propose algorithms for addressing

them.

As the first problem, we focus on the effect of rate-independent MAC

overheads in random access protocols such as carrier sensing, backoff, and

fixed rate header transmissions. These overheads become prominent in short

packets that are transmitted at high data rates. We address this problem

by partitioning the transmission spectrum into a narrow channel and a wide

channel. The narrow channel is used for transmitting the short packets and

the wide channel is used for transmitting the longer packets. We propose

a protocol called WiSP (channel Width Selection based on Packet size) to

estimate the appropriate channel widths depending on the relative traffic

load involving short and long packets in the network.

Next, we address the problem of channel switching delay in multichan-

nel, multihop wireless networks. Future networks can benefit from using

multiple channels simultaneously within a network. However, to maintain

connectivity between various wireless nodes, the wireless radios may have to

switch between channels. Due to both software and hardware restrictions,

switching channels incur significant delay, which can be detrimental to many

delay-sensitive, real-time applications, such as VoIP and interactive gaming.

To address this, we propose SHORT (Static-Hybrid approach for rOuting

Real Time applications), a joint channel allocation and routing algorithm for

finding delay efficient routes for real-time applications without significantly

affecting the performance of non-real time applications.
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Finally, we explore the possibility of using variable width channels in a

multihop wireless network for efficient spectrum utilization. We propose a

variable width channel allocation scheme that adjusts the channel widths for

the nodes during routing proportional to the rate requirement of the flows.

The nodes also perform an admission control mechanism to determine if there

is enough spectrum to satisfy the rate requirement.
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CHAPTER 1

INTRODUCTION

Today’s internet is dominated by heterogeneous traffic characterized by a

variety of applications that include both real-time and non-real-time appli-

cations. Real-time applications include voice over IP (VoIP), video, and

online gaming that are delay sensitive. Non-real time applications, on the

other hand, are delay tolerant, such as those transmitted over transmission

control protocol (TCP) that require reliable data delivery. Each of these

kinds of traffic behaves differently with respect to the packet characteristics

and wireless bandwidth requirements. For instance, VoIP traffic is character-

ized by short packets, of the order of few 100 bytes, that may be generated at

a constant rate. Such low rate traffic requires only very little wireless band-

width, but the packets need to be delivered to the destination within a time

deadline as otherwise the receiver may not be able to reproduce the voice

without much distortion. Video traffic consists of variably sized packets and

demands a higher transmission bandwidth. Finally, the traffic due to online

gaming may involve a lot of packets and have to be delivered quickly to the

gaming server to minimize user frustration. Moreover, these packets, similar

to those of video, can be of varying sizes.

The real-time applications discussed above have to co-exist in the same

network with the non-real-time traffic, which exhibits different characteris-

tics. For instance, TCP packets are typically fixed size packets generated

at a varying rate depending on the bandwidth availability. These are typ-

ically best-effort traffic requiring reliable packet delivery, but are not time-

constrained, unlike the real-time applications. Examples of non-real-time

applications include e-mail, file transfer, and normal web browsing.

The relative heterogeneity in the traffic characteristics and the service re-

quirement of the applications has motivated extensive research on algorithms

for adapting the radio resources to suit the application needs. Because wire-

less is a shared medium, a significant portion of this research has been dedi-
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cated to exploring the means for effectively sharing the spectrum among the

contending users or applications. Many of the existing wireless standards,

such as IEEE 802.11, IEEE 802.15.4, etc., provision multiple frequency chan-

nels, where a channel is a band of frequency spectrum. Realizing wireless

networks using these standards allows for a natural way of sharing the spec-

trum amongst the users. By equipping the wireless nodes with multiple radio

interfaces [1, 2, 3] and by utilizing appropriate routing, channel allocation,

and scheduling strategies [3, 4, 5, 6], substantial performance benefits can be

harnessed using these multichannel standards.

In this thesis, we explore variable-width channelization in multichannel

wireless networks and focus on three important problems that are significant

in this perspective. We briefly summarize each of these three works below:

Channelization to Reduce Protocol Overheads: In random access

protocols every packet transmission is preceded by a considerable amount

of time spent in assessing the channel to be free. The time spent in these

overheads is independent of the actual length of the packet transmitted or

the data rate used for transmitting the packet. These are, therefore, termed

as bandwidth independent or rate independent overheads [7]. The ratio of

the time spent on these overheads to the time spent on an actual packet

transmission, suggests an inefficiency in the underlying protocols. This is

because, while the time spent on the overhead can be justified when consid-

erable time is spent on the packet transmission, it may seem unfair when the

actual packet transmission itself lasts for just a fraction of the time spent

on the overheads [7]. The inefficiency can be substantial when the packet

payloads are small or the transmission data rates are large. The situation

can be worse when a wider spectrum is allocated for packet transmissions,

as wider channels can achieve larger data rates.

Present day communication networks predominantly involve packets of

smaller sizes. For instance, a 2008 study [8] showed that more than 55%

of the packets in the internet are of sizes smaller than 100 bytes. This is

not surprising given that many of the packets, such as those generated by

VoIP or the ACKs generated by TCP (used commonly by the HTML traffic),

are small packets of the order of 100 bytes. To minimize the inefficiency, it

makes sense to use a lower rate of transmission for shorter packets. However,

simply reducing the rate of transmission may result in the short packets

2



occupying the channel for a longer time, which may be unfair for any long

packets that are to be transmitted. Furthermore, the channel will not be

used efficiently. In this work, we propose to instead partition a channel

into a narrow channel, for sending short packets, and a wide channel, for

sending long packets. We intend to use two wireless radios,1 one each for

the two channel partitions. Narrow channels have a reduced capacity, which

lowers the maximum transmission rate. We provide protocols for dynamically

deciding the appropriate percentage of bandwidth for the short packets.

Managing System Latencies Due to Channel Switching Delays: To

ensure connectivity between multiple wireless nodes that are allocated differ-

ent channels, the wireless interfaces must be allowed to switch across chan-

nels. However, due to software and hardware constraints, the delay involved

in switching the channels can be significant. This may result in latencies in

packet transmissions that can be prohibitive for delay sensitive applications,

such as VoIP. We propose an algorithm that can adapt the underlying chan-

nel allocation mechanism dynamically based on the type of traffic routed

through the network. We consider two popular channel allocation strategies

followed in multichannel wireless networks, namely static channel approach

(in which the channels for all the radios of a node are fixed), and hybrid

channel approach (in which the channels for only a subset of radios are fixed

a priori and those for the remaining radios are varied dynamically during

communication). The hybrid channel approach is optimized for achieving

higher throughputs, but has poor delay performance due to the associated

dynamic channel switching. While there are no such latencies in a static

channel allocation scheme, which results in a better delay performance, they

do not have a good throughput performance. In this work, we propose a

mechanism that exploits the benefits of a static channel approach for pro-

viding lower delay paths for real-time applications, while at the same time

utilizing the flexibilities of a hybrid channel approach for providing higher

throughputs for non-delay sensitive applications. Using actual implementa-

tions on a multichannel mesh testbed, we show that the end-to-end delays

of real-time applications are significantly lower in our proposed approach

when compared to a purely hybrid approach. Furthermore, we show that the

1The terms ‘wireless radio’ and ‘wireless interface’ are used interchangeably in this
thesis and both mean a wireless network interface card.
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throughput of non-delay sensitive applications is not degraded significantly

as a result of our approach.

Variable Width Channelization Based on Traffic Demand: Most of

the existing multichannel protocols propose to use fixed width channels. For

instance, the channel width in the case of IEEE 802.11a is fixed at 20 MHz.

These fixed width channels may either result in the spectrum being used

inefficiently when there is not enough traffic to utilize the spectrum or in an

insufficient spectrum when the traffic requires more than the available band-

width. If the spectrum widths, instead are allowed to be variable, then the

flows that require less spectrum can use a narrow spectrum, thereby allowing

the remaining spectrum to be used by flows requiring more spectrum. While

certain standards allow for variable channels widths, as in the case of IEEE

802.11n where channel widths of 40 MHz are allowed, there are no existing

provisions to allow for dynamically varying the spectrum widths based on

traffic needs.

In this work, we exploit the notion of channel width adaptation for tuning

the available spectrum in a multihop network dynamically during route se-

lection, based on the bandwidth requirement of the flows. We provide ideas

on how the bandwidth can be adjusted per flow during route selection and

study the performance of our protocols using simulations.

1.1 Outline

The dissertation is organized as follows:

1. In Chapter 2, we present the overall system architecture that provides

a perspective on all the protocols proposed in this dissertation with

respect to the popular open systems interconnection (OSI) model. We

also provide the network model that is assumed by our algorithms.

2. In Chapter 3, we motivate the problem of partitioning a channel into

sub-channels of varying widths based on packet sizes. We then pro-

vide simulation results for various network scenarios to elucidate the

performance of our protocol.
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3. In Chapter 4, we propose a mechanism for fixing the wireless radios on

pre-defined channels to minimize the latency due to channel switching

while routing real-time applications, such as VoIP. We also provide

results obtained from a prototype implementation of our protocol on a

multichannel testbed, and a set of simulation results to understand its

limitations.

4. In Chapter 5, we discuss an algorithm for adapting the spectrum widths

based on the traffic load, and propose protocols for adapting the chan-

nel widths during routing based on the requirement of the flows.

5. Finally, in Chapter 6, we summarize our work and conclude the thesis.
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CHAPTER 2

PROTOCOL ARCHITECTURE AND
SYSTEM MODEL

In this chapter we develop a framework to accommodate the three problems

addressed in this thesis with an overall system perspective. The protocol-

level details of each problem are addressed specifically in the corresponding

chapters. We also develop the system model and the relevant background on

multichannel protocol operation that are used by the subsequent chapters.

2.1 System Architecture

The system architecture is shown in Figure 2.1. The architecture follows the

generic open systems interconnection (OSI) model along with the proposed

protocol additions. Each additional layer is color coded to indicate the pro-

tocol interactions with the OSI model. As we can observe from the figure,

all of our proposed algorithms are built at the networking and the medium

access control (MAC) layer. However, they utilize the attributes from other

layers for their operation. The interactions between the layers are indicated

using colored arrows. The protocol layers along with their interactions are

described as follows:

1. The green blocks correspond to the problem of channelization to over-

come protocol overheads. This protocol requires an estimate of the

mix of packet sizes generated by the application. Therefore, the corre-

sponding protocol operating at the network layer utilizes the packet size

information along with the rates at which they are generated from the

upper layers. This is shown using a green arrow from the Application

and Transport Layer block in the figure. The packet size information

is later used to partition the channels appropriately at the MAC layer.

This process of channelization based on packet sizes, however, has noth-

ing to do with the route selection process. We therefore do not show a

6



green arrow pointing to the Route Selection block.

2. The blocks corresponding to the problem where the channel switching

latencies are controlled are shown in red. Here, the protocols decide

on a suitable channel allocation strategy depending on the traffic class

of the application to be routed. This information can be obtained

from the application layer. Furthermore, in addition to performing

channel allocation, the channel switching process of the wireless radios

on the entire route of the flow has to be controlled to minimize latency.

Routing, naturally, becomes an important part of this problem.

3. Next, the blocks corresponding to traffic demand-based channel width

selection are shown in blue. The corresponding protocols have to es-

timate the arrival rate of packets as generated from the upper layers.

Furthermore, route selection is an integral part of the traffic load-based

channel width selection problem. This is because, as will be discussed

later in Chapter 5, the channel widths are determined based on whether

a particular flow can be admitted at every single hop depending on the

bandwidth requirement. Hence, we show blue arrows drawn to the

Application and Transport Layer block and Route Selection blocks.

Figure 2.1: System Architecture.

All three problems addressed in this thesis deal with the MAC layer. This

is because all three problems require means for adapting both the channels
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allocated to a radio and their widths. The MAC layer should therefore be

adapted to correspond to the current channel settings. The channel informa-

tion should also be passed on to the wireless interface drivers to tune their

RF chains and change their center frequencies appropriately. All of the newer

protocol blocks, therefore, have their appropriately colored arrows directed

to the respective blocks.

2.2 Network Model

We consider both a single-hop, infrastructure network and a multihop, ad-

hoc network. In the case of an infrastructure network, a set of nodes are

distributed around an access point (AP). In the case of a multihop, ad-hoc

network, nodes are distributed evenly across a geographical area, and nodes

communicate with each other using multiple single hop transmissions. (Two

nodes are said to be one hop away if they are within the communication

range of each other.) In both the infrastructure and multihop setting, all the

nodes are assumed to be static. All the nodes and APs are equipped with two

radios. All the radios are capable of either transmitting or receiving at any

time, but not both simultaneously. Each of the radios within a wireless node

is assigned to one of several possible channels (where the number of channels

available depends on the wireless technology). The channels assigned to a

wireless radio can be switched dynamically. In the infrastructure setting,

the channels for the radios of an AP are determined using the algorithm

in [9], and the radios of all the clients served by an AP are assigned the same

channels as those of the AP. In the case of a multihop setting, the channels for

the multiple radios are allocated and controlled by the multichannel protocol

discussed in the next subsection.

2.3 Multichannel Protocol

The hybrid multichannel protocol (HMCP) proposed in [10] is used to ensure

connectivity between nodes during multichannel operation (in Chapters 4

and 5). This is made possible by allowing the wireless interfaces on the

wireless nodes to switch across channels as required. In this section, we

8



Figure 2.2: Example multi-channel protocol operation.

present a brief overview of the multichannel protocol.

As described earlier, all the wireless nodes in the network are equipped

with two interfaces. Among the two wireless interfaces, one may switch

across multiple channels whenever required, while the other remains fixed

on a channel as long as the channel is perceived to be good. We call the

interface that may switch often across channels the switchable interface and

the interface that operates on a fixed channel the fixed interface. The fixed

interface is used for data reception. However, data transmission can be from

any of the two interfaces, fixed or switchable; this depends on the channel

of the fixed interface on the neighboring node to which a multihop flow is

directed. In general, if a neighboring node is operating on the same fixed

channel as the current node, then the transmission can be through the fixed

interface, else the switchable interface is used for transmission after switching

its channel to the fixed channel of the neighboring node. Thus, a node can

potentially transmit and receive simultaneously, if the channels on which it

transmits and receives are different. Because the channel on which a switch-

able interface operates depends on the fixed channel of a neighboring node,

it is clear that we need to allocate channels only to the fixed interface of a

node. Figure 2.2 shows an example of our protocol operation, where the solid

arrows indicate a data transmission from node A to node C, with node B as

an intermediate node and the dotted arrows indicating a traffic from node to

C to A via node B. Here nodes A and C switch their switchable interface to

node B’s fixed channel, while node B switches its switchable interface to the

fixed channel of node C for forwarding packets from A, and that of node A

for forwarding packets from node C.

To ensure connectivity between the nodes, every node should be aware of

the channels on which their neighboring nodes are listening. This is made

possible by the exchange of a broadcast hello message that contains the

channel information. Every node periodically sends out a hello message on
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all the channels so that all its neighbors that may be listening on any of the

channels may receive the hello message. To help in channel management,

the hello messages are propagated over two hops. This allows every node

to be aware of the channel information of all the neighbors that are up to

two hops away.

The routing mechanism used currently in the testbed is a modified AODV

protocol [11]. The modifications to the original AODV protocol involve find-

ing a channel-diverse route that avoids bottlenecks and reduces the expected

transmission time. These modifications are incorporated into the route met-

ric, called MCETT (multichannel expected transmission time) used by the

routing protocol [10]. More details on the multichannel protocols can be

found in [12] and [3].

While the channel allocation and routing algorithms used by HMCP pro-

vide a generic functionality, we modify these algorithms based on the require-

ments of our problem, as elaborated in the remaining chapters.
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CHAPTER 3

OVERCOMING PROTOCOL OVERHEADS
USING PACKET SIZE DEPENDENT

CHANNEL WIDTHS

Present day communication networks have to carry traffic with different

packet sizes. For instance, VoIP traffic and TCP acknowledgments (that

are generated by web browsing and HTML traffic) are short packets with

the VoIP packets typically being a few hundred bytes long, while the TCP

acknowledgment (ACK) packets are 40 bytes long. File transfers and other

TCP sessions, on the other hand, may involve data packets of the order of

1000 bytes [13]. An internet traffic analysis by CAIDA in 2008 shows that

over 55% of the packets in the internet are smaller than 100 bytes and this

statistic has not changed over the past ten years [8]. However, the traffic anal-

ysis also shows that the percentage of bits from large packets (> 1400 bytes)

has grown by 15 - 20% over a ten year duration. This suggests that a variety

of packet sizes will exist in the future communication networks. Even though

the transmission time associated with the short packets is small, the channel

waste due to bandwidth-independent overheads of the MAC protocol is sig-

nificant for these packets. The bandwidth-independent (or rate-independent)

overhead is the channel time consumed independent of the transmission rate

used for data packets.

In many wireless random access schemes, the channel is first assessed to

be free before a packet transmission to avoid collisions (e.g., DIFS in IEEE

802.11). If the channel is sensed to be busy, the nodes back off until the

channel becomes free again. The associated overhead due to the time spent

in backoff or channel sensing is independent of the packet size or the trans-

mission rate, and is hence said to be rate/bandwidth independent. If, for

instance, Pl (in bits) denotes the packet payload size, T (in seconds) denotes

the channel time consumed by the rate-independent overhead associated with

each transmission, and R (in bits per second) denotes the transmission rate,

then TR
Pl+TR

fraction of channel capacity is wasted as the rate-independent

overhead [7]. Observe that the channel waste is higher when the packet
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payload size is small or when we use higher rates of transmission.

Prior approaches for reducing the bandwidth independent overhead include

frame aggregation [14, 15], where multiple MAC frames are combined into a

larger frame and sent using a single transmission opportunity. While frame

aggregation is in general effective for reducing the effect of the overheads,

there are some situations when frame aggregation cannot be adopted. For

instance, in the case of voice flows, the packets usually arrive at a low rate

and aggregating the voice packets before sending out the combined packets

will incur a delay. This may result in poor voice quality at the receiver.

Simply choosing to not aggregate the voice packets may once again result in

expensive channel capacity to be wasted on the overheads. With the rapidly

growing usage of VoIP calls over the internet, this would imply a significant

waste of capacity.

In this work, we propose to partition the channel into a narrow channel

and a wide channel. The narrow channel is used for transmitting the short

packets and the wide channel is used for transmitting the longer packets.

We intend to use multiple radios, one each for the different channel par-

titions. Narrow width channels have a reduced capacity, which lowers the

maximum transmission rate achievable on these channels. As a result, the

channel waste in rate-independent overhead can be reduced. However, an

algorithm is needed to determine how much bandwidth to allocate for short

packet transmissions. This is because, if a node predominantly transmits

long packets with very few short packets, then the capacity lost for the long

packets while partitioning the channel may have a negative effect on their

throughput. In this case, it may be instead beneficial to send the long pack-

ets on both the channel partitions. The same may be true if the packets are

predominantly short in the network.

To decide the appropriate channel partitions, we develop a protocol called

WiSP (channel Width Selection based on Packet size), where we use a simple

heuristic to determine the channel partition widths. WiSP estimates the rel-

ative load of short and long packets in the network and calculates the channel

partition widths accordingly. We show that our proposed protocol achieves

a better performance in terms of achieving higher network throughput when

compared to a situation where we do not partition. We also compare the per-

formance of our protocol with that of frame aggregation for scenarios where

frame aggregation does not provide effective improvements, and show that
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our approach provides a significant performance in those scenarios. More-

over, we show that we can achieve even more performance gains when we

use our WiSP approach along with frame aggregation. Our results suggest

that the WiSP protocol can complement the frame aggregation in reducing

the MAC overheads in situations where just the frame aggregation cannot

be used.

3.1 Related Work

The bandwidth independent MAC overheads limit the maximum achievable

throughput despite the various physical layer approaches used to improve the

wireless network performance [16]. Frame aggregation is a popular approach

that is currently being used to address the bandwidth independent overhead

problem [14].

Sadeghi et al. [17] proposed the opportunistic autorate (OAR) method,

which uses frame aggregation to take advantage of favorable channel condi-

tions. When the underlaying rate adaptation algorithm shows that a frame

can be sent at higher than base-rate, the MAC attempts to aggregate frames

so that the time spent sending the frame at the higher rate equals the time

to send a single frame at base-rate. In [18], the authors propose a cross-layer

approach for frame aggregation by which both broadcast and unicast pack-

ets can be aggregated into a single frame. The authors use this approach

for combining ACK packets (which are considered to be broadcast frames as

they do not require link level ACKs) with TCP data packets traveling in the

opposite direction. In [19], the authors propose to use frame aggregation,

not just to improve the TCP throughputs, but also to improve fairness and

reduce the end-to-end delays in the network.

While frame aggregation can be thought of as a time-based approach,

where frames are aggregated across time, the bandwidth partition approach

that we propose is a frequency-based approach. Our scheme can therefore

be used to complement the frame aggregation scheme. Furthermore, our

scheme can benefit from frame aggregation, as multiple short packets sent

on the narrow channel can be combined to a single large frame and sent on

the wide channel whenever the bandwidth allocation for the short packets is

not sufficient.
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3.2 Problem Motivation

Figure 3.1: Percentage of capacity loss as a function of fraction of
bandwidth used. All packet sizes are in bytes.

In this section, we demonstrate the benefit of choosing variable-width chan-

nels based on packet sizes. First, we wish to understand the amount of ca-

pacity loss when higher rates are used for short packets. For this, we generate

packets of various sizes ranging from 100 bytes to 1500 bytes and plot the

capacity loss calculated at various fractions of bandwidths. If α is the frac-

tion of bandwidth allocated for the packet transmission and DIFS, SIFS

represent the inter-frame spacing in IEEE 802.11a (chosen to be 34 µs and

16 µs respectively, considering a slot duration of 9µs), the capacity loss Closs

is calculated using the following formula:

Closs =
(DIFS + SIFS) ∗ αR

Pl + (DIFS + SIFS) ∗ αR
In this equation, R is the maximum rate of transmission, which at a band-

width of 20 MHz (802.1la channel width) is 54 Mbps. We assume that the

rate of a packet transmitted at α fraction of the bandwidth is also scaled by

α. The Closs values for the different packet sizes are shown in Figure 3.1.

We observe from the plot that shorter packets experience higher capacity

loss when they are transmitted at higher fractions of bandwidth than longer
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packets. In particular, we observe that for a 100 byte packet transmitted at

the full bandwidth (α = 1), the capacity loss is above 80%, whereas it is lower

than 20% for a 1500 byte packet. We also observe that shorter packets expe-

rience a lower capacity loss when they are sent at narrower bandwidths. This

suggests that choosing bandwidth based on packet sizes can lower capacity

loss.

Figure 3.2: Illustration on technique used for partitioning the channels. All
packet sizes are in bytes. Percentage values indicate the percentage of bits
from short packets.

Next, we show that the percentage of channel allocated for the short pack-

ets should be proportional to the corresponding bytes of short packets in the

network. For this, we used ns-2 to simulate an 802.11a wireless link between

two nodes and generated two constant bit rate UDP flows from one of the

nodes to the other. One of the UDP flows generates 1000 byte packets at

the rate 24 Mbps and is sent on one part of the channel. The other UDP

flow generates 100 byte packets and is sent on the other part of the channel

using a different radio. The data generation rate (in Mbps) of the 100 byte

packets is varied so that the percentage of bits from short packets (PBSP)

in the network is in the range of 10% up to 50% in steps of 10%, where the

PBSP is defined as follows:

• Percentage of bits from short packets (PBSP): It is the number

of bits from short packets over a certain period of time (in seconds)
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divided by the total number of bits from all packets over the same

period of time (in seconds).

We counted the number of bits from all the packets over a period of 3 seconds

to estimate the PBSP. Accordingly, the data generation rates for the 100

byte packets are approximately evaluated to be 2.5 Mbps, 6 Mbps, 10 Mbps,

16 Mbps, and 24 Mbps). In each case, we varied the percentage of channel

allocated to short packets from 10% to 50% and measured the combined

throughput of the both the flows in each case. The throughput values are

plotted in Figure 3.2. We first observe that the throughput values peak at

the channel percentage value that is same as the PBSP value. Furthermore,

we observe that the throughput falls if the percentage of channel allocated

to short packets goes beyond the actual percentage of short packets in the

network, as this will reduce the amount of channel allocated to the long

packet flows.

3.3 Channel Partitioning Mechanism

We consider both an infrastructure mode network and a multihop, ad-hoc

network setup. We assume that the available spectrum can be split into

multiple sub-channels of varying widths. The center frequency of the sub-

channel depends on the width of that channel. For all of our evaluations in

this chapter, we only consider situations where a channel is split into two

sub-channels. Figure 3.3 shows an example where a 20 MHz channel is split

in two possible ways: (a) two 10 MHz channels, and (b) a 5 MHz and a 15

MHz channel. Note that the center frequencies of the sub-channels change

depending on their widths.

We assume that the clients and the AP are equipped with two radios.

The wireless radios in a node are capable of transmitting over any one of

the sub-channels at any instant of time, and are capable of switching across

sub-channels. We assume that the sub-channels have sufficient guard band

between them, so that the interference due to transmissions on adjacent

channels is reduced.
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Figure 3.3: An example showing a 20 MHz channel split into (a) two 10
MHz channels, and (b) a 5 MHz and a 15 MHz channel.

3.4 Throughput Analysis

Before proceeding to discuss our algorithm, we wish to first provide an ap-

proximate analytical formulation of our problem. For our analysis, we assume

that all the nodes follow the IEEE 802.11a DCF (distributed coordination

function) mechanism for channel access, and use the throughput analysis

technique in [20]. We assume the basic access scheme of 802.11 without the

RTS/CTS mechanism. If E[P ] denotes the average duration of the packet

payload, then the normalized system throughput S is given by (see Eq. 13

in [20])

S =
PsPtrE[P ]

(1− Ptr)σ + PtrPsTs + Ptr(1− Ps)Tc
(3.1)

where Ptr is the probability that there is at least one transmission in a slot

and Ps is the probability of a successful transmission given that there is at

least one transmission. Furthermore, σ is the duration of an empty slot

time, Ts and Tc are the average time the channel is sensed busy because of

a successful transmission and a collision, respectively, and their values for a

basic DCF scheme (without RTS/CTS) are given by [20]{
Ts = H + E[P ] + SIFS + δ + ACK +DIFS + δ

Tc = H + E[P ∗] +DIFS + δ
(3.2)

17



where H is the duration of the packet header, δ is the propagation delay,

and E[P ∗] is the average duration of the longest packet payload involved

in a collision. We now obtain expressions for the throughput achieved for

a scheme in which different bandwidths are allocated for different packet

sizes. For simplicity, we consider the case when there are only two packet

size classes, depending on a threshold Pth. Any packets that are smaller

than Pth are considered short packets and those that are larger than Pth are

considered long packets. Let α denote the fraction of bandwidth allocated

to the short packet class and (1− α) the fraction of bandwidth allocated to

the long packet class. We assume that the transmission rate for each of the

packet classes is also scaled by α or (1− α) as the case may be.

In Eq. (3.2), the interframe spaces (SIFS and DIFS) and δ are band-

width independent overheads. The remaining parameters have to be scaled

appropriately depending on the bandwidth allocated and the transmission

rates. Let E[Ps] and E[Pl] denote the average packet sizes of the short and

long packets, respectively, and E[P ∗s ] and E[P ∗l ] denote the average duration

of the longest packet payload that is involved in collision in each of the packet

classes. Furthermore, let T smalls and T longs denote the average time of suc-

cessful transmission for short and long packets, respectively, and T smallc and

T longc denote their respective time the channel is sensed busy during a col-

lision, which are obtained by appropriately scaling the packet duration, the

header duration, and the ACK duration by α (for short packets) or (1− α)

(for long packets) accordingly. The modified expressions are as follows:


T smalls = (H + E[Ps] + ACK)/α + SIFS + δ +DIFS + δ

T smallc = (H + E[P ∗s ])/α +DIFS + δ

T longs = (H + E[Pl] + ACK)/(1− α) + SIFS + δ +DIFS + δ

T longc = (H + E[P ∗l ])/(1− α) +DIFS + δ

(3.3)

The normalized saturation throughputs of the short and long packets,

Ssmall and Slong, are respectively given by

{
Ssmall = PsPtrE[Ps]

(1−Ptr)σ+PtrPsT small
s +Ptr(1−Ps)T small

c

Slong = PsPtrE[Pl]

(1−Ptr)σ+PtrPsT
long
s +Ptr(1−Ps)T

long
c

(3.4)
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Observe that the probability values in the above equations are assumed to

remain unaffected due to bandwidth splitting as they are only dependent

on bandwidth independent parameters and packet size [20]. (In effect, we

assume similar contention on both channels.) The ratio of the throughputs

of the short and long packets is given by

Ssmall

Slong
=

(PsPtrE[Ps])((1− Ptr)σ + PtrPsT
long
s + Ptr(1− Ps)T longc )

(PsPtrE[Pl])((1− Ptr)σ + PtrPsT smalls + Ptr(1− Ps)T smallc )
(3.5)

If we assume that the terms due to collision (containing the probability

value (1 − Ps)) and idle times (containing the probability value (1 − Ptr))

are negligible compared to the term involving successful transmissions (the

middle terms in the numerator and the denominator), we get

Ssmall

Slong
≈ E[Ps]

E[Pl]
× T longs

T smalls

(3.6)

Using the expressions for T longs and T smalls from Eq. (3.3) and neglecting

(as an approximation) the terms other than the packet size, we can simplify

Eq. 3.6 as

Ssmall

Slong
≈ α

(1− α)
(3.7)

The objective of our algorithm is to make sure that both the short and long

packets obtain a share of channel proportional to their corresponding load.

When both the short and long packets are saturated and are transmitted

independently of each other (by using two radios) over a single channel, we

get:

Ssmall

β
=

Slong

(1− β)
(3.8)

where β denotes the fraction of bits from short packets and (1− β) denotes

the fraction of bits from long packets. Upon taking the ratio of throughputs

in Eq. (3.8) and using Eq. (3.7), we have:

Ssmall

Slong
=

β

(1− β)
=

α

(1− α)
(3.9)

From Eq. (3.9), we have that α = β. Because the value of α is derived
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assuming that the collision and idle periods are negligible, its value may not

be accurate. However, to compensate for this approximation, we allow the

packets belonging to one of the partitions to be sent on the other partition

whenever possible. Using this understanding, we develop our protocol that

is discussed in the next section.

3.5 The WiSP Protocol

In the WiSP protocol, the bandwidth partition values are decided by the

access point (AP) based on packets received from all its clients. The par-

tition values are such that a certain percentage of channel is used for the

short packets, and the remaining channel is used for the long packets (after

discounting for a guard band of Wguard). The mechanism used for deciding

the percentage of channel partitions will be discussed shortly.

Partitioning a channel into varying widths will affect the timing parameters

of the 802.11 as observed in [21]. Accordingly, the maximum transmission

rate achievable on each of the channel partitions will also be different, as the

number of data bits per symbol will not change with the channel width [21].

For instance, the duration of an 802.11a OFDM symbol, which is 4 µs when

transmitted over a 20 MHz channel, becomes 40 µs when only 10% of the

channel (2 MHz) is used. Accordingly, the maximum data rate of 54 Mbps

achieved using a 64-QAM modulation using a 3/4 coding rate on a 20 MHz

channel, will be reduced to 5.4 Mbps on the 2 MHz channel with same 216

data bits per symbol in the both the cases. The data rate within each

channel partition can be adapted between a minimum and a maximum rate

automatically based on the channel conditions. One such algorithm has been

proposed by the authors of [21]. We do not scale the slot size, DIFS, SIFS,

and other system parameters as these values are bandwidth independent.

The authors of [21] also observed that narrower channels have a longer

transmission range than that of a wider channel. One of the key observations

in this regard is that for a given total transmit power, the wireless radios

can transmit at a higher power per unit Hz on a narrow channel. Observe

that this effect may result in different length transmission links for each

of the channel partitions. This is not desired for our system as this may

cause a link asymmetry between the clients and the AP for the short and
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long packets. For example, the short packets may end up contending over a

larger area than the long packets. In order to overcome this asymmetry, we

scale the transmission power by the same factor as the fraction of channel

allocated. Thus, narrower channels transmit at a lower power than wider

channels to provide the same SNR at the receiver. We also scale the carrier

sense thresholds of the wireless radios accordingly.

Because the AP decides the channel partition for all the clients in the net-

work, all the clients use the same channel widths. As a result, the clients can

carrier sense each other independently on each of the partitions. Specifically,

a client sending short (long) packets carrier senses only that sub-channel

used for sending the short (long) packets. We now proceed to our algorithm

description.

Algorithm The channel partitions are decided by the AP based on the

overall knowledge of the packet size mix in the network. The WiSP protocol

achieves this by letting the clients individually estimate the overall incoming

arrival rate of the packets from the application, in addition to the percentage

of bits that are from packets smaller than a certain threshold, Pth (in bytes).

The clients then periodically transmit the arrival rate estimate and the PBSP

to the AP. An alternative approach will be for the AP to estimate the PBSP

based on its local packet receptions. However, this estimate may not be

accurate as some of the packets may be lost due to collisions, and a few

others may be lost due to buffer overflows at the clients. These lost packets

will not be accounted in the AP’s estimate.

The PBSP along with the overall arrival rate of packets at each client en-

ables the AP to estimate the individual arrival rates of short and long packets

at each client. Ideally, the AP can use this information to propose individual

channel partitions to each client proportionate to their packet mixes. This

may, for instance, result in a scenario where a client sending only long packets

or only short packets will be transmitting on a whole un-partitioned channel,

while those that send an equal mix of both the packet sizes will be using a

half of the channel for each packet sizes. While this scenario can intuitively

provide a significant benefit with respect to minimizing the overheads, imple-

menting this protocol in reality may be hard. This is because, for successful

communication between a pair of nodes, they have to be communicating

on the same sub-channel (involving the same center frequency and channel
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width), to establish proper frequency lock and synchronization in the RF

hardware. In order to achieve this, the AP has to timeshare across clients,

each time using a different channel partition for the short and long pack-

ets. This approach may require stringent time synchronization across nodes.

Furthermore, when each client uses a different channel partition, there can

be additional difficulties with respect to carrier sensing.

The node responsible for estimating the partitions starts by estimating

the network-wide PBSP using β∗ =

∑
i

βiλi∑
i

λi
x 100, where βi and λi (in bps)

are the fraction of bits from short packets and the overall arrival rate of

packets in bits per second, respectively, at client i. Thus, for instance, if

at a client A the packets arrive at a rate of 40 bps of which 20% of the

bits are from short packets, and at another client B packets arrive at a

rate of 60 bps of which 30% of the bits are from short packets, then β∗

can be evaluated to be (0.2x40)+(0.3x60)
(40+60)

x100 = 26. The node evaluates and

communicates the percentage of channel to be used for short and long packets

based on β∗. Intuitively, our mechanism recommends that the percentage of

channel chosen be proportional to the actual arrival rate of packets.

The pseudocode of our algorithm is shown in Algorithm 1.

In this algorithm, each of the segments (demarcated by a line) is executed

at different instants of time. The algorithm starts by sending both the short

and long packets on the same channel (using a single radio) using the full

channel width Wtotal. Every client i then estimates the arrival rate of packets

on its uplink flows, λi and computes the fraction of bits from short packets,

βi using the formula,

βi =
No. of bits from packets of size less than or equal to Pth

Total no. of bits from all packets
,

where Pth is a packet size threshold, such that packets smaller than Pth are

considered short and are otherwise considered long. The clients then send

the estimate of arrival rate (λi) and the fraction of bits from short packets

(βi) to the AP periodically every Tcl seconds. The AP, after receiving the

λi and βi values from all the clients, calculates the aggregate PBSP in the

22



Algorithm 1 WiSP: Channel Partitioning Algorithm

Parameters: Total channel width - Wtotal

Small packet Threshold - Pth
Guard band - Wguard

Algorithm executed at client i
Initialization
a. Wcurr ← Wtotal

——————————————
Steps repeated every Tcl seconds by each client
1. Start interval Tcl
2. if Wcurr = Wtotal OR Wcurr = 0
3. Send packets using Wtotal to AP
4. Go to Line 12.
5. // size(packet) gives the size of packet in bits
6. if size(packeti) ≤ Pth{
7. Send packets using (Wcurr −Wguard) to AP
8. numShortBitsi+ = size(packeti)
9. } else {
10. Send packets using (Wtotal −Wcurr −Wguard) to AP
11. numLongBitsi+ = size(packeti)}
12. End interval Tcl
13. λi = (numShortBitsi+numLongBitsi)

Tcl

14. βi = numShortBitsi
(numShortBitsi+numLongBitsi)

15. sendToAP(λi, βi)
16. return

——————————————
Steps performed when receiving the channel partitions from the AP
17. recvFromAP(w)
18. if(Wcurr 6= w)
19. Wcurr ← w
20. return

——————————————
Algorithm executed at the AP
1. Repeat for each client j,
2. recvFromClient(λj, βj) //receive λj and βj
3. // Calculate the network wide % of short packets

4. β∗ =

∑
i

βiλi∑
i

λi
x 100, i ∈ set of clients

5. wpercent = smallest multiple of integer k ≥ β∗

6. sendToClient(wpercent ∗Wtotal)
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network, using β∗ =

∑
i

βiλi∑
i

λi
x 100. The AP then chooses the percentage of

channel for the short packets to be the smallest multiple of an integer k that is

greater than or equal to β∗ (we use k = 5 in our simulations), and broadcasts

the channel width to all the clients (using sendToClient()). Thus, for the

previous example where we evaluated β∗ to be 26%, the percentage of channel

for short packets will be chosen as 30% for k = 5. Once the new channel

widths are received by the clients (in recvFromAP()), they use the appropriate

percentage of channels for the short and long packets. The percentage of

channel partition for the short packets is chosen at the granularity of 5% to

simplify our evaluation. However, in reality this will depend on the capability

of the wireless hardware and the driver.

Observe that when all the packets in the network are short, then Wcurr will

be correctly estimated to be 100%, in which case the nodes do not partition

the channel. The same will be the case when all the packets are long in

the network (see Line 2). To enable new clients that may later join the

AP’s network, the AP sends the beacon packets (or neighbor advertisement

packets) on the full bandwidth Wtotal along with the information on the

current bandwidth partition. Thus, the new client can start using the new

partitions right away. The AP can then re-calculate the bandwidth partitions

for the whole network based on the packets that the new client generates.

If one of the channel queues is full at a client, then the client can choose to

send any additional packets arriving at that channel queue through the other

channel. Finally, the AP also includes the estimate of short and long packets

in any downlink flows while evaluating the channel partitions. For this, the

AP estimates the total number of bits of downlink packets to be sent and

finds the percentage of those bits that are from short packets.

3.6 Performance Results

As the first part of our performance evaluation, we validate our WiSP algo-

rithm to show that the algorithm quite accurately estimates the percentage

of channel to allocate to short packets. We provide simulation results that

cover a variety of scenarios for this purpose. Later, in the second part, we
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compare the performance of our algorithm to that of frame aggregation for

scenarios where frame aggregation performs poorly. As we mentioned in

Section 1, the main purpose of our algorithm is not to replace frame aggre-

gation, but to complement it in scenarios where frame aggregation cannot

be performed (or performs poorly). All of our simulations are performed

using an IEEE 802.11a access protocol, and unless specified otherwise, the

packet transmission rate for 100% bandwidth is fixed at 54 Mbps to provide

a fair evaluation of our protocol. However, our protocol does not restrict the

use of any rate control algorithms, like the one proposed in [21] within each

channel width. We use a guard band of 5% between the sub-channels while

partitioning the channels. We also tried simulating other guard band sizes,

and we found that the results do not vary significantly. We use a packet size

threshold Pth of 128 bytes to determine whether a packet is short or long in

all our simulations. This choice is motivated by the study in [8], where the

authors have identified that most of the packets in the internet are either

of the order of 100 bytes or 1000 bytes. Along with the transport protocol

headers, 128 bytes seemed to be a good option for discriminating a short

packet from a long packet.

3.6.1 Algorithm Validation

To validate our WiSP algorithm, we first simulated two wireless nodes and

generated two constant bit rate UDP flows from one of the nodes to the other.

One UDP flow generates 1000 byte packets at the rate 54 Mbps. The other

UDP flow generates 100 byte packets. The data generation rate of the 100

byte packets is varied so that the PBSP in the network (calculated by dividing

the bit rate of packets generated in the 100 byte UDP flow by the total bit

rate of packets from both the UDP flows) is approximately in the range of

10% up to 50% in steps of 10% (accordingly, the data generation rates for the

100 byte packets are evaluated to be 6 Mbps, 14 Mbps, 23 Mbps, 36 Mbps,

and 54 Mbps). Furthermore, to vary the PBSP in the network from 60% to

90%, we set the rate at which the short packets (100 bytes) are generated

to be 54 Mbps and varied the rate of long packets to be 36 Mbps, 23 Mbps,

14 Mbps, and 6 Mbps. In each case, we measured the combined throughput

of the two flows for three cases, namely:
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• No Partition: In this case, we use only one channel (without parti-

tioning) that is shared by both the short and long packet flows. We

use a single radio for transmitting both the flows.

• Fixed Partition: For this scenario, we choose the best partition of

channels manually. We vary the percentage from 10% to 90% in steps

of 10 and choose the partition that has the maximum throughput. We

then record the maximum throughput obtained across all the percent-

age values.

• WiSP: We use our WiSP protocol to estimate the percentage of chan-

nel to be allocated for the short and long packet flows.

In the following set of simulations, we do not apply the optimization for

WiSP suggested in Section 3.4, where we send the long packets in the par-

tition meant for the short packets (and vice-versa). We have used this opti-

mization in our simulations later in this chapter starting from Section 3.6.2.

Figure 3.4: Validation of WiSP algorithm.

We plot the throughput values for the three cases listed above in Figure 3.4.

We observe from the plot that the WiSP protocol achieves almost the same

throughput as the maximum throughput obtained using fixed partition val-

ues. Furthermore, we observe that partitioning the channels improves the
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throughput performance significantly. However, the percentage of improve-

ment decreases as the PBSP in the network is increased. This is because

the benefit from partitioning the channel can be useful only when there is a

balanced mix of long and short packets in the network. When a network has

predominantly short packets (greater than 50%), there are not many long

packets that can benefit from the capacity saved by using channel partition-

ing.

We observe that the throughput achieved using the WiSP algorithm is

slightly lower than the throughput achieved using a fixed partition. This

is because we do not use an optimal split of channels due to the use of

a heuristic. Moreover, our WiSP algorithm initially does not partition the

channels, as it has no estimate of the amount of short and long packets in the

network. Later, as the clients start estimating the PBSP and reporting them

to AP, they start to use different sub-channels for the two packet sizes. The

associated latency involved in estimating the PBSP and getting the amount

of channel from AP, therefore, creates a throughput difference.

Figure 3.5: Effectiveness of WiSP in estimating the PBSP.

Next, we show that our algorithm can correctly estimate the PBSP even

when they vary. For this, we generated two UDP flows, as before, between a

client and the AP. One of the UDP flows generates constant bit rate traffic

of 24 Mbps consisting of 1000 byte packets. The other UDP flow generates

100 byte packets. However, the rate of this flow is varied at intervals of
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15 seconds starting from 24 Mbps to 10 Mbps, and then to 3 Mbps before

finally increased to 16 Mbps. We plot the actual PBSP as evaluated using

these rates, and that estimated by our algorithm in Figure 3.5. The interval

at which the clients send the reports on PBSP is set to 5 seconds. We there-

fore observe that, except for a latency of 5 seconds, our algorithm correctly

tracks the PBSP.

Figure 3.6: Performance of WiSP for TCP flows.

Next, we further validate our protocol using TCP flows. For this, we con-

sider a network where the number of clients is varied from 5 to 25 in steps

of 5. Each client generates a TCP flow towards the AP for 60 seconds; the

TCP frame size is fixed at 1000 bytes, so that the TCP ACKs (which are

40 bytes long) are the only short packets in the network. We then plot the

aggregate throughput obtained for the three cases: No Partition, Fixed Par-

tition, and WiSP. The plots are shown in Figure 3.6. We once again observe

that the WiSP algorithm achieves a throughput that is close to the maxi-

mum throughput achieved using the fixed partition case. Furthermore, we

observe that, except for the 5 clients case, partitioning the channels consis-

tently offers a throughput improvement of at least 20%. We also observe

that the throughput improvement using our scheme becomes significant as

the number of TCP flows in the network increases. This is mainly due to

two factors: (a) decreased throughput for the No Partition case due to in-

creased contention (as the number of clients increase), and (b) more ACKs
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in the network as the number of TCP flows increase, which can benefit by

the channel partitioning.

Figure 3.7: Performance of WiSP for UDP flows with varying packet rates.

Finally, we validate our protocol for the case of UDP flows with varying

rates of packets generated. For this, we once again consider a network consist-

ing of 5 to 25 clients. Each client generates a constant bit rate UDP flow at

24 Mbps rate consisting of 1000 byte packets, and another UDP flow consist-

ing of 100 byte packets. The rate for the 100 byte traffic is chosen uniformly

at random from the set {2.5 Mbps, 6 Mbps, 10 Mbps, 16 Mbps, 24 Mbps}.
Furthermore, the rate of packet generation is varied every 15 seconds. The

simulation time is set to 60 seconds. Figure 3.7 plots the throughput values

averaged over 10 different runs of our simulation (where the rates for the

variable bit rate flows are randomly chosen each time) obtained using WiSP,

the maximum throughput obtained using the fixed partition algorithm, and

the throughput when the channel is not partitioned. We observed that the

percentage of channel at which the maximum throughput was achieved var-

ied for each run of our simulation. However, in each case our WiSP algorithm

correctly estimated the PBSP, as we can observe from the plots. Further-

more, we observe that we achieve throughput improvement of at least 25%

and up to 79% using our WiSP algorithm. This shows that a significant

percentage of channel capacity has been saved using our algorithm.
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3.6.2 Comparison with Frame Aggregation

We now provide throughput results for a scenario where frame aggregation

(FA) cannot be used effectively for reducing the impact of bandwidth inde-

pendent overheads. The IEEE 802.11n standard proposes two approaches

for frame aggregation, namely the MAC service data unit aggregation (A-

MSDU), and the MAC protocol data unit aggregation (A-MPDU) [22]. Each

of these schemes is explained below:

• A-MSDU: In this algorithm, the packets belonging to the same desti-

nation are aggregated into a single 802.11 frame with a common MAC

header and checksum. This scheme requires that all the aggregated

packets are of the same service type. The maximum size of an aggre-

gated frame is restricted to 7935 bytes (which is 256 bytes less than the

maximum PHY layer frame size of 8191 bytes). The packets are aggre-

gated until either the maximum frame size is reached or the time since

the first packet in the aggregated frame is within an allowable delay.

Because an aggregated MSDU has a common MAC header, a packet

failure will require the whole aggregated MSDU to be re-transmitted.

• A-MPDU: This scheme concatenates multiple 802.11 MAC frames

each having its own MAC header and checksum. The MPDU approach

is less efficient than MSDU because of the added overhead of the indi-

vidual MAC headers of the constituent 802.11 frames. However, MPDU

supports a block ACK scheme by which individual sub-frames are ac-

knowledged separately, which allows the re-transmission of only those

sub-frames in error. The maximum aggregated frame size in this scheme

is 64 kilobytes. Unlike the A-MSDU scheme, packets are not delayed

during aggregation, but instead the algorithm simply aggregates what-

ever packets are present in the interface queue limited by the maximum

frame size.

We compare our WiSP algorithm with both the variants of the frame

aggregation approach. However, because the A-MPDU scheme incorporates

a block ACK scheme that allows for selective re-transmission of erroneous

frames, it is a preferred approach to A-MSDU. Additionally, we also provide

results for WiSP used along with frame aggregation (henceforth termed as

FA+WiSP), which is described below:
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• FA+WiSP: In this scheme, we perform frame aggregation to aggregate

multiple MAC frames whenever possible. However, we additionally

run the WiSP algorithm to partition the channel so that the effect

of overheads on any unaggregated short packets can be reduced. The

flavor of frame aggregation used depends on the scenario discussed in

the subsequent sub-sections.

For the case of WiSP and FA+WiSP, in the subsequent set of simulations,

we also allow for the long packets to be sent in the channel partition meant

for the short packets (and vice-versa), whenever the partition is empty.

Scenario I - Comparison with A-MSDU scheme

Figure 3.8: Throughput comparison
for TCP flows across various
A-MSDU aggregation delays.

Figure 3.9: Mean packet delay
comparison for TCP flows across
various A-MSDU aggregation delays.

We first compare our WiSP algorithm with the A-MSDU frame aggregation

scheme. For this, we generate a network consisting of a single AP. The

number of clients connected to the AP is chosen uniformly at random between

5 and 15. The time delay for aggregating the MSDU frames is varied from

20 ms to 100 ms, in steps of 20 ms. First, we generate a TCP flow from

each client to the AP. We then measure the combined throughput and the

mean delay per packet for the flows from all the clients. We repeat the

simulation 10 times, each time choosing a different number of clients and

their positions around the AP. The throughput and the delay per packet

averaged over 10 runs are plotted across the frame aggregation time delays
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in Figures 3.8 and 3.9, respectively. The throughput and packet delay values

for WiSP and No Partition are not dependent on the frame aggregation

delays and are hence plotted as a straight line across all the X-axis values.

We observe from Figure 3.8 that WiSP has a higher throughput than No

Partition. The improvement mainly comes from the fact that in the case of

WiSP, the TCP ACK packets are sent on a narrower channel than the one

used for sending the data packets. This helps in overcoming the bandwidth-

independent overheads for the ACK packets. We also observe that except for

the 20 ms case, FA+WiSP has a throughput performance that is almost same

as the frame aggregation approach. This is because, when the packets are

delayed for aggregation, most of the packets become larger than the packet

size threshold of 128 bytes. This results in the channel not being partitioned

at all, which is similar to that of the frame aggregation scenario. In the

case of 20 ms, the packets are not delayed significantly to result in such

a scenario. Furthermore, both FA+WiSP and frame aggregation perform

comparably to or worse than the No Partition case. This is due to the fact

that data and ACK packets are delayed for aggregation, bringing down the

throughput. This is evident from the mean packet delay plot in Figure 3.9.

This plot shows that packets suffer a significantly higher delay on average

when frame aggregation is used when compared to the cases where it is not

used (i.e., No Partition and WiSP). Additionally, the mean delay per packet

goes up as the frame aggregation delay increases. However, the packets sent

using the FA+WiSP scheme suffer a lower delay than the frame aggregation

approach as the ACK packets are aggregated and sent on a different channel

than the data packets in the case of FA+WiSP, resulting in lower delays due

to contention and collision.

Next, using the same network setup as the TCP simulations, we generate

a 40 kbps UDP flow consisting of 100 byte packets from each client. This

traffic is intended to simulate VoIP traffic in the network. Because we do not

generate any long packets, we partition the channel into two halves and use

them both simultaneously for the WiSP scenario. The throughput and mean

packet delay, averaged over 10 runs as before, are plotted across the frame

aggregation delays in Figures 3.10 and 3.11, respectively. In this case the

throughput for the WiSP case is only slightly higher than the No Partition

case as the benefit from using two channels is not significant owing to the

lower rate of traffic generated. Unlike the previous scenario involving TCP
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Figure 3.10: Throughput comparison
for UDP flows across various
A-MSDU aggregation delays.

Figure 3.11: Mean packet delay
comparison for UDP flows across
various A-MSDU aggregation delays.

packets, frame aggregation performs better than the No Partition case as

multiple packets are delivered in a single transmission. The trend otherwise

is very similar to that of the TCP scenario discuss in the previous paragraph.

Scenario II - Comparison with A-MPDU scheme

Figure 3.12: Performance comparison
(with A-MPDU FA) for UDP flows
with every client sending both short
and long packets.

Figure 3.13: Performance comparison
(with A-MPDU FA) for UDP flows
with some clients sending only short
packets and the rest sending only
long packets.

We now compare our algorithm with the A-MPDU frame aggregation tech-

nique. For the following set of simulations, we vary the number of clients in
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Figure 3.14: Performance comparison (with A-MPDU FA) for TCP flows.

the network from 5 to 25 in steps of 5, and each client is made to generate

two UDP flows. One of the flows consists of 100 byte packets at a rate of

1 Mbps, and the other flow generates 1000 byte packets. The rate at which

the 1000 byte packets are generated is chosen randomly from {16 Mbps, 24

Mbps, 36 Mbps, 48 Mbps}. We simulated several instances of this network,

each time varying the location of the clients around the AP and the rate at

which the 1000 byte UDP flows are generated. In each case, we measure the

throughput obtained for No Partition, WiSP, A-MPDU frame aggregation

(we used the code shared with us by the authors of [23]), and FA+WiSP

mechanisms. Because the largest packet size used in this simulation is 1000

bytes, we set the maximum frame size for frame aggregation also to be 1000

bytes to get a fair comparison. We evaluate the throughput for bigger frame

sizes later in Section 3.6.2.

We plot the average throughput across all the runs for the four scenarios

described above. The corresponding plot is shown in Figure 3.12. We observe

from the plot that, despite there being a reduction in throughput as the num-

ber of clients increase (possibly due to increased collisions in the network),

the WiSP protocol always performs better than the frame aggregation and

no partition scenarios. This suggests that WiSP can be useful for scenarios

where a client generates different mix of short and long packets with the rate

of short packets being relatively small. Furthermore, we observe that the

FA+WiSP always has the best performance among all the four scenarios as

it combines the benefit of both frame aggregation and WiSP.
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Next, we simulate a network in which about half the clients send a 1000

byte packet flow, at a rate of 24 Mbps each, while the remaining clients

send a 100 byte packet flow at a rate of 1 Mbps each. Thus, unlike the

previous case, every client sends just a single UDP flow to the AP. The

number of clients in the network is once again varied between 5 and 25.

We once gain measure the throughput for the four scenarios averaged over

multiple runs. During each run, we vary the number of clients generating

short packets and long packets in addition to varying their positions around

the AP. Figure 3.13 shows the corresponding results. First we observe that,

though WiSP outperforms frame aggregation on average for all the number

of clients chosen in this simulation, the improvement decreases as the number

of clients increase. Upon analyzing the data we observe that the reason for

this is mainly due to a reduction of the long packet throughput in the case

of WiSP when compared to that of frame aggregation. This may be because

of increased contention on both the channel partitions. We also observe that

FA+WiSP, as before, always has the best performance in all cases.

Finally, we simulate a scenario where a user attempts to open multiple

web sessions; web sessions are TCP connections where the associated HTTP

packets are transferred within a few seconds. To emulate this scenario, we

simulated five different TCP flows every 5 seconds, each lasting for just 5

seconds. We varied the number of clients in the network from 5 to 25 in

steps of 5 as in the case of UDP flows. Every client in the network is made

to simulate the same number of TCP connections as explained. We then

plot in Figure 3.14 the combined throughput of all the TCP connections

across all clients for the case where no WiSP or frame aggregation is used,

and for WiSP, frame aggregation, and FA+WiSP. We observe that WiSP

always performs better than frame aggregation. This is because the ACKs

and data packets are sent using different radios on different channels in the

case of WiSP, resulting in a performance benefit. We observe, however, that

WiSP and FA+WiSP have almost the same performance, suggesting that

there is not much performance benefit from aggregating ACKs compared to

just sending them on a separate channel.
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Figure 3.15: UDP flows with every
client sending both short and long
packets (with A-MPDU FA).

Figure 3.16: UDP flows with some
clients sending short packets only
while the rest sends long packets only
(with A-MPDU FA).

Figure 3.17: Performance comparison (with A-MPDU FA) for TCP flows at
higher rates.

Scenario III - Effect of higher data rates and bigger frame size
(using A-MPDU FA)

Newer wireless network standards, such as the IEEE 802.11n, are capable of

supporting higher data rates of up to 600 Mbps. Furthermore, the aggregated

frame sizes at these rates can be up to 64 kilobytes long [14], which is much

longer than 1000 bytes used in the previous set of simulations. However, the

packet sizes generated by existing applications are still limited to 1500 bytes.

Therefore, in addition to just the short packets, even the long packets may be

aggregated using bigger frame sizes. Evaluating the performance of our WiSP
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protocol is therefore important both for completeness of our performance

study, and to bring out the limitations of our approach. To address this

issue, we repeated the simulations from Scenario II for comparing with the

A-MPDU scheme, for four data rates: 108 Mbps, 216 Mbps, 432 Mbps, and

600 Mbps (when 100% of the channel is used). The maximum frame size

used depends on the data rate used. For 54 Mbps, we use a frame size

of 5000 bytes; for 108 Mbps, we use 10000 bytes; for 216 Mbps, we use

20000 bytes; for 432 Mbps, we use 40000 bytes; and for 600 Mbps, we use

64000 bytes. The network consists of a single AP with the number of clients

chosen uniformly at random between 5 and 15. Figures 3.15, 3.16 and 3.17

show the corresponding throughput values averaged over multiple runs for

the two UDP cases and the TCP case described in the Scenario II. We also

included the plots for the 54 Mbps case for comparison.

From the plots, it is obvious that though WiSP performs better than the

No Partition case, frame aggregation performs much better. Furthermore,

the performance of the frame aggregation increases with higher data rates

owing to the corresponding increase in the maximum frame size allowed. We,

however, observe that FA+WiSP has the best performance in all scenarios.

This clearly brings out the limitation of the WiSP approach, when it is not

performed along with frame aggregation. This suggests that WiSP cannot

be used as a stand alone approach for improving performance, but can rather

be used as a complement to frame aggregation to further improve network

performance.

Scenario IV - Effect of packet size threshold (using A-MPDU FA)

The packet sizes generated in simulations so far are either 1000 bytes or 100

bytes long. We therefore used a fixed packet size threshold of 128 bytes to

distinguish between a short packet and a long packet. While these packet

sizes are typical of the voice and TCP flows in the internet [8, 13], video traffic

has more varied packet sizes [24, 25]. The authors of [26] have estimated that

the packet sizes for video traffic may be Weibull or exponentially distributed,

depending on the codec. A different packet size threshold may have to be

chosen when the packet sizes are varied.

In this subsection, we evaluate our protocol for more varied traffic and an-

alyze its performance for various packet size thresholds. We created a single

37



Figure 3.18: Performance comparison (with A-MPDU FA) across various
packet size thresholds.

network consisting of an AP to which a number of clients (chosen uniformly

at random from 5 to 15) are connected. A third of the clients generate a

TCP flow consisting of 1000 byte frames, another third of the clients gen-

erate VoIP-type UDP flows consisting of 100 bytes packets at 40 kbps rate.

The remaining third of the clients generate a video traffic consisting of expo-

nentially distributed packet sizes with a mean packet size of 750 bytes. We

measured the overall throughput of this network using packet size thresholds

of 64, 128, 256, 384, and 512 bytes. The corresponding plot for all the four

schemes evaluated is shown in Figure 3.18. The maximum frame size for the

A-MPDU frame aggregation approach is chosen to be 5000 bytes. We ob-

serve from the plot that, as before, WiSP performs better than No Partition

and FA+WiSP performs better than frame aggregation for all packet size

thresholds. This shows that the performance benefit of our protocol is signif-

icant even for a varied traffic scenario. We also observe from the WiSP and

FA+WiSP plot that, for the packet size distribution in this simulation, the

performance benefit is highest when the packet size threshold is 256 bytes,

after which it decreases. This suggests that choosing the right packet size

threshold is vital to achieving good performance benefits from our protocol.

A threshold that is too large or too small may result in the channel being

partitioned inappropriately, such that it may result in more packets queued

in one of the partitions with very few packets in the other.
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3.6.3 Performance in a Multiple Network Scenario

Figure 3.19: Performance comparison (with A-MPDU FA) for a multiple
network scenario.

The performance results so far evaluated a single network scenario con-

sisting of just a single AP. The performance results hold as is for a multiple

network scenario when each AP (in multi-AP scenario) is allocated a unique

channel, as there is no inter-dependence between the APs with respect to

our protocol operation. Accordingly, the performance achieved by one AP

can be extended to every AP that operates on a different channel. For the

case where two APs are allocated the same channel, the performance may be

affected. However, the performance in such a scenario will be similar to the

case when a single AP is used to serve the clients both in its network and

from the adjacent AP’s network (that is allocated the same channel).

In this section, we evaluate the performance of our protocols for a scenario

where all the APs are allocated channels of varying widths based on their

individual client load. For this purpose, we used a load-aware spectrum

allocation algorithm called Greedy Rising described in [9]. In this algorithm,

the APs with the largest client load are allocated the widest spectrum possible

with the constraint that every AP is allocated at least a minimum width

spectrum. The reasoning behind this approach is that APs with higher load

require more spectrum bandwidth to service all of their client loads fairly.

However, when a larger chunk of spectrum is allocated to the APs, their

data rates also increase, which provides an opportunity to employ our WiSP

protocol to minimize the resulting protocol overheads. The Greedy Rising
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algorithm also makes sure that no two APs within one hop of each other are

allocated overlapping portions of the spectrum. Because no two neighboring

APs share a channel, the carrier sensing mechanism is simplified, as the

clients are only required to carrier sense individually the channel partitions

on which they are sending the packets.

To evaluate this scenario, we let the Greedy Rising algorithm choose chan-

nel widths ranging between 2 MHz and 40 MHz (in steps of 2 MHz). The

corresponding data rates using a certain spectrum width are scaled accord-

ingly. Thus, a data rate of 54 Mbps at a 20 MHz spectrum will be scaled

to 27 Mbps at 10 MHz and 108 Mbps at 40 MHz. We then measure the

throughput for a network consisting of 4, 9, 16, and 25 APs. The number of

clients per AP is chosen uniformly at random between 5 and 15. We then

generate both a 100 byte UDP flow at 1 Mbps and a 1000 byte UDP flow at

24 Mbps from each of the clients to the AP. Because every AP potentially

has a different number of clients, the load for each AP is also different. The

throughput results, averaged over 10 runs, where in each run a different num-

ber of clients is chosen for each AP, are presented in Figures 3.19. For the

case of frame aggregation, while it may be ideal to use a variable aggregated

frame size corresponding to the width of the spectrum chosen, we could not

find any such approach in the literature. We therefore use a A-MPDU scheme

with a fixed frame size of 5000 bytes. We observe from the figure that the

trend is very similar to that observed in the previous sections. Particularly,

we observe that WiSP performs better than the No Partition case, while

FA+WiSP performs the best. The performance benefits are mainly due to

the fact that increased channel widths transmit at higher data rates, creating

further room for improvement due to a reduction in the protocol overheads.

3.6.4 Performance in a Multihop Network Scenario

We now evaluate our protocol for an ad-hoc, multi-radio, multihop network

setting. We generate a network consisting of 100 nodes distributed uniformly

at random over a 150 m x 150 m area. The transmission range for each

node is set at 30 m. We then choose a set of source and destination nodes

uniformly. We simulate both a single channel and a multichannel network.

In the case of multichannel network, the channels are allocated statically to
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Figure 3.20: Performance comparison
(with A-MPDU FA) of TCP flows
over a single channel, multihop
network.

Figure 3.21: Performance comparison
(with A-MPDU FA) of TCP flows
over a multichannel, multihop
network.

the nodes based on the algorithm in [27]. We used 12 channels for allocation.

In the case of a single channel allocation, the nodes are equipped with two

radios, one each for the two channel partitions realized using WiSP. For a

multichannel scenario, each node is equipped with four radios. Two of the

radios are used for receiving packets, and two radios are used for forwarding

the packets to the next hop. Ideally, the channel partitions on the receive

channel of a node must be decided by the receiving node based on the short

and long packet mixes received from its senders. Likewise, the partitions for

the transmit channel of a node must be decided by the next hop node that

receives packets from this node. However, this will require a complicated

carrier sensing mechanism, as every node may be required to carrier sense

on every possible channel width partitions possible for a given channel. This

is because, the mix of short and long packets may be different at different

nodes. Therefore, to simplify carrier sensing in our evaluations, we choose a

globally common channel partition for each channel, as detailed below.

For both the single channel and multichannel cases, we use the AODV

protocol for routing the packets from the source to the destination. The

route request messages (RREQ) in the AODV protocol are broadcast on all

possible channel widths (as decided by the network wide mix of short and long

packets, described below). Additionally, in the case of multichannel networks,

the RREQ messages are also broadcast on all channels. We evaluated our

protocol using both UDP and TCP flows. We varied the number of source
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nodes that originate a flow in the network from 5 to 25, in steps of 5. In each

case, for simplicity of evaluation, we ensured that the packets are generated

with a fixed proportion of short and long packets. For UDP, we generate 100

byte short packets at 6 Mbps and 1000 byte long packets at 12 Mbps from

every source node, so that the network wide PBSP is 33%. In the case of

TCP, the PBSP (which are TCP ACKs) per flow turned out to be 10%. Using

a fixed proportion of short and long packets allows us to set the percentage of

channels for short packets in WiSP manually to be 10% for simulations using

TCP flows and 33% for simulations using UDP flows. In each case, a node

will carrier sense only the sub-channel on which the packets are to be sent.

In other words, a node sending long packets will only carrier sense the sub-

channel used for sending the long packets and vice-versa for short packets.

We compare the throughput results using WiSP with that obtained using

the No Partition, A-MPDU frame aggregation, and the FA+WiSP schemes.

The maximum frame size for the frame aggregation scheme is chosen to be

5000 bytes.

The throughput results for TCP flows are plotted in Figure 3.20 for the sin-

gle channel case and Figure 3.21 for the multichannel case. In either scenario

we observe that, except for the case of 5 flows, both WiSP and FA+WiSP

perform better than No Partition and frame aggregation. The performance

benefit in the case of WiSP comes from the fact that the short and long

packets are sent on separate channels, and the savings from the overhead.

The throughput results for UDP flows are shown in Figures 3.22 and 3.23 for

the single channel and multichannel cases, respectively. We observe that the

trend is similar to that of the TCP flow scenario.

From the figures, we observe a big variance in throughputs in the case

of single channel plots. This variance is due to the fact that we evalu-

ate the throughput of different topologies individually and plot the average

throughput across all the topologies. The plots, therefore, capture the per-

formance comparison that is averaged across multiple topologies. We have

also plotted the performance of our protocols for individual topologies along

with the performance improvements averaged across the topologies in Fig-

ures 3.24 and 3.25 for TCP and UDP, respectively. We observe from the

figures that while in general WiSP and FA+WiSP perform better than No

Partition and frame aggregation in most of the topologies, there are cases

where frame aggregation performs slightly better than WiSP (for example,
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Figure 3.22: Performance comparison
(with A-MPDU FA) of UDP flows
over a single channel, multihop
network.

Figure 3.23: Performance comparison
(with A-MPDU FA) of UDP flows
over a multichannel, multihop
network.

topology 5 in the case of 5 TCP flows). This is because, when there are fewer

flows in the network, the aggregated packets in the case of frame aggregation

experience less contention and therefore, less packet collisions. Note that the

benefit from WiSP is also due to the reduced contention per sub-channel.

However, because the contention in the network is already small, there is

not much opportunity for WiSP to provide a better performance than frame

aggregation. This suggests that there can be cases where frame aggregation

may be more beneficial. But, WiSP can still provide a good performance

improvement in most cases.

3.7 Discussion

In this chapter, we have proposed to partition a channel into a narrow and

a wide sub-channel for overcoming bandwidth-independent MAC overheads.

The narrow sub-channel is used for sending short packets and the wide chan-

nel is used for sending long packets. We have proposed a protocol called WiSP

for determining the channel partitions. We have studied the performance of

our algorithm using extensive simulations and show that our algorithm can

provide significant improvements even in cases where frame aggregation can-

not provide a significant improvement. Furthermore, we have also discussed

a mechanism where the WiSP protocol can be used along with frame ag-
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gregation to obtain significant performance benefits. We have evaluated our

protocol both for infrastructure and ad-hoc network scenarios.

While we have shown that the WiSP protocol is beneficial in reducing

the MAC independent overheads in a variety of scenarios, there are three

important complexities involved with respect to a practical implementation

of this protocol. We enumerate them as follows:

1. The WiSP protocol relies on the fact that the transmission spectrum

can be split in to multiple channels of varying widths with arbitrary

center frequencies. While some of the newer drivers already allow for

variable width channels, they do not allow for arbitrary center frequen-

cies. However, with the advent of software defined radios that allow

for such flexibilities, we expect that the future communication systems

will allow for different center frequencies.

2. The WiSP protocol requires that every node be equipped with multi-

ple radios. The number of radios depends on the number of channel

partitions. Thus, when we have two channel partitions every node re-

quires two radios, in the case of an infrastructure network. Twice as

many radios are required in the case of a multihop network. Having

multiple radios within a node may increase the complexity and cost of

the system. However, reducing hardware costs may make this feasible

in the future systems.

3. Finally, the WiSP protocol also requires that the radio can switch be-

tween multiple channel widths frequently. We do not factor the as-

sociated latencies involved in switching the channel widths. However,

we expect that the future hardware will be capable of adjusting the

channel widths at a fast time scale.

3.8 Future Work

All our evaluations of the WiSP protocol assume a single packet size thresh-

old and split the channel into two. An interesting future work would be to

evaluate the protocol with multiple packet threshold, thereby splitting the

channel into more than two sub-channels. However, exploring this direction
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will require each nodes to be equipped with more than two radios. Another

direction will be to estimate the appropriate packet size threshold dynami-

cally based on the current packet mixture in the network.

In the case of multihop network, the nodes have to employ complex carrier

sensing mechanisms. This is because the nodes in a multihop network may be

using different partitions on the same channel spectrum. One straightforward

heuristic will be to carrier sense every possible channel-width pair before

initiating a transmission. However, this will require different carrier sense

thresholds for each of the channel widths. This mechanism, however, can

be expensive due to the associated latencies. An interesting future work

will therefore be to explore efficient means for carrier sensing across channel

widths.

Finally, we developed a heuristic algorithm for partitioning the channels

based on the packet sizes. It may, however, be possible to formulate this as

an optimization problem, which is likely to be NP hard. Moreover, we need

significant knowledge of the network and traffic parameters to arrive at an

optimal solution. However, as done by the authors in [9], an approximate

version of the problem can be solved and we leave this as a future work.
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(a) 5 Flows (b) 10 Flows

(c) 15 Flows (d) 20 Flows

(e) 25 Flows (f) Percentage improvement over No Parti-
tion

Figure 3.24: Comparison across multiple multihop topologies - TCP flows.
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(a) 5 Flows (b) 10 Flows

(c) 15 Flows (d) 20 Flows

(e) 25 Flows (f) Percentage improvement over No Parti-
tion

Figure 3.25: Comparison across multiple multihop topologies - UDP flows.

47



CHAPTER 4

MANAGING HARDWARE LATENCIES
FOR DELAY SENSITIVE APPLICATIONS

In a multichannel wireless network, multiple nodes that operate on different

channels have to be coordinated to ensure network connectivity. The coor-

dination between the nodes can be built as part of the channel allocation

algorithm that chooses channels for the wireless interfaces. Three popular

channel and interface allocation strategies exist in the literature, namely

common control channel approach [5], static channel approach [27, 28], and

hybrid channel approach [10]. Among these three channel allocation strate-

gies, the common control channel and hybrid channel approaches exploit the

channel switching capabilities of the wireless radios.

In the common control channel approach [5], a set of nodes, before ini-

tiating a communication, exchange control messages on a common channel,

mostly using a radio dedicated for this purpose, to agree upon the channel

to use before a data transmission. The radios used for transmission are then

switched to the channel agreed upon. The disadvantage with this scheme is

that it wastes significant time (used for deciding the transmission channel)

and spectrum (used for the dedicated control channel). In the static channel

approach [27, 28], the radios in a node are assigned channels such that any

two neighboring nodes share at least one common channel to to ensure net-

work connectivity. In this scheme, none of the wireless radios switch their

channels during communication. However, this scheme offers limited flexi-

bility in channel allocation and may not use all the available channels for

allocation [29].

In the case of the hybrid channel and interface allocation strategy [10], a

subset of radios in a node are assigned channels that do not switch channels,

as in the static approach, and the remaining set of radios are allowed to

switch channels when required. Only the radios that have fixed channels

are used for receiving data. Furthermore, the radio with the fixed channel

is used for transmitting data that are intended for neighbors with the same
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fixed channel. The radios that are capable of switching channels are used for

transmissions to neighbors that are on a different channel. Thus, network

connectivity can be maintained more easily than in the static approach.

Among these three approaches, the hybrid multichannel protocol has been

shown to be efficient in providing higher system throughput [10]. However,

the hybrid channel allocation approach is not optimized for providing low de-

lays for real-time applications, such as VoIP. This is because, while a static

channel allocation achieves network connectivity by ensuring common chan-

nels with neighboring nodes [27], a hybrid channel allocation relies on the

radios of a node to switch across channels to maintain network connectivity.

The latency associated with channel switching can be prohibitive for delay

sensitive applications such as VoIP or interactive gaming [30], especially in

the case of a multihop operation. Because no such channel switch delays are

incurred in a static channel approach, a static scheme may be beneficial for

delay sensitive applications. However, a purely static channel-based approach

is not suitable for providing higher throughput values for non-delay sensitive

applications [29]. Moreover, a pure-static channel approach is not suitable

in a network where the link characteristics keep varying that can make the

network topology change with time (as in a mobile network). Therefore, we

need a new scheme that can exploit the advantages of both the static and

the hybrid channel allocation schemes.

Routing real-time applications over multichannel wireless networks has

been handled in several different ways in the literature. Most of the existing

approaches concentrate on provisioning QoS in multichannel wireless net-

works [31, 32]. The authors in [32], for instance, propose a topology control

and QoS routing approach with the goal of providing bandwidth aware rout-

ing for real-time flows. However, the approach requires significant topology

information for its execution, and hence not wholly suitable for an unman-

aged network. In [31], the authors provide a QoS-aware multichannel schedul-

ing algorithm for providing higher priorities for VoIP packets, by which they

are scheduled more often than non-real-time packets. A similar approach for

scheduling delay sensitive flows more often than non-delay sensitive flows is

proposed in [33]. In [34], the authors propose a gateway controlled channel

allocation scheme, where the channel allocation to the nodes is determined

by the gateway based on the flows in the network. However, the scheme does

not differentiate between real-time and non-real-time flows. In this work, we
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propose a mechanism that can provide low delay routes for real-time applica-

tions and high throughput routes for non-real-time applications, which can

complement any of the existing QoS mechanisms. The goal is to consider

practical difficulties (such as hardware delays) that may exist in a network,

which many of the existing QoS mechanisms overlook.

We propose a mechanism called SHORT that exploits the benefits of a

static channel approach for providing lower delay paths for real-time appli-

cations, while at the same time utilizing the flexibilities of a hybrid channel

approach for providing higher throughputs for non-delay sensitive applica-

tions. According to this approach, we design a protocol that can, depending

on the type of traffic being routed, control the channel allocation strategy of

the nodes. More specifically, when routing a delay sensitive flow, the routing

protocol, after determining the route to be taken for the flow, forces the nodes

on the path to behave as in a static channel approach. In other words, the

radios in the nodes are controlled in such a way to prevent them from switch-

ing across channels for the duration of the real-time flow. A hybrid channel

allocation scheme is used for routing non delay-sensitive flows. We modify

the multichannel AODV routing protocol proposed in [10] for this purpose.

Note that, while our protocol enables the nodes on a real-time flow’s path

to behave as in the static channel mechanism, the actual path is not de-

termined by our approach and is taken care of by the multichannel routing

protocol [10], discussed briefly in Section 4.1, that is complemented by the

hybrid channel allocation protocol (hence the name static-hybrid approach).

Using actual implementations on a multichannel mesh testbed called Net-

X [3], we show that the end-to-end delays of real-time flows are significantly

lower in SHORT when compared to a purely hybrid approach. Furthermore,

we show that the throughput of non-delay sensitive applications is also not

degraded too much.

4.1 Background

The hybrid channel allocation protocol [10] is discussed briefly in Chapter 2

(see Section 2.3) and we do not repeat it in this chapter. In this section, we

provide a brief overview of the multichannel routing protocol that is used in

the testbed on which we carry out our experiments. In the discussion that
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follows, we assume that every node is equipped with two radios or interfaces

(the terms interface and radio are used interchangeably in this work and both

mean a wireless radio).

4.1.1 Routing Protocol

The routing mechanism used currently in our testbed is an AODV proto-

col, modified for multichannel operation. The modifications to the original

AODV protocol include incorporating a mechanism for finding a channel

diverse route, avoiding bottlenecks, and reducing the overall expected trans-

mission time in addition to reducing the number of hops [3]. More specifi-

cally, to utilize the benefit of using multiple channels, it is necessary to make

sure that a flow experiences minimum intra-flow interference (interference

due to transmissions of the same flow on adjacent hops). This requires that

the route taken by the flows is such that the adjacent hops are on different

channels as much as possible. Furthermore, it is preferable to avoid routing

multiple flows through a single node, as this may result in the node requiring

to switch its transmission channel frequently for routing the flows, which may

possibly be targeted at neighbors on different channels. These requirements

are incorporated in the form of a routing metric, called the MCR metric [3],

as the traditional routing metric based on hop count is not suitable. The

MCR metric, in brief, uses the statistics of channel usage, such as the time

spent by the wireless radio transmitting or receiving on a particular channel

and the number of bytes sent or received on that channel, from the interface

drivers. The metric then uses the channel statistics to calculate the cost for

switching the channels for routing a flow, which is essentially the time taken

to switch a radio from one channel to another. Channels that are heavily

utilized (i.e., have more data sent on them) will have a higher switching cost

than those that do not have as much data. Additionally, the cost of a link

per channel is estimated using the popular ETT metric [35] on every channel,

which when coupled with the switching costs and summed up over the entire

path results in the MCR routing metric. If SC(ci) is the channel switch-

ing cost of channel ci used in the ith hop of transmission, and ETTi is the

estimated transmission time in the ith hop, then the MCR metric is given by
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MCR = (1− β) ∗
h∑
i=1

(ETTi + SC(ci)) + β ∗ max
1≤j≤c

Xj

where β is a weight between 0 and 1, h is the number of hops on the path,

and c is the total number of channels. Xj is the total ETT cost for all links

using channel j on the route, and is given by

Xj =
∑

∀i such that ci=j

ETTi.

The ETT of a link is given by ETT = ETX ∗ S
B

, where ETX is the expected

number of transmission attempts (including re-transmissions) required to

transmit a packet, S is the average packet size and B is the data rate of the

link. The expected number of transmissions is estimated based on the loss

in the link.

The multichannel protocol also incorporates a few other modifications [3].

For instance, when a routing entry is created for a node, it is also neces-

sary now to indicate the channel and the actual interface to use for reaching

the next hop. The multichannel routing protocol incorporates the appropri-

ate mechanism for creating the route entries. Furthermore, route caching,

available in the original AODV protocol, is not performed as the channel

allocations and the corresponding costs may change frequently, which can

be estimated accurately only at the destination. Finally, the multichannel

routing protocol incorporates a procedure called “Route Refresh”, by which

a source node initiates a route discovery periodically (currently every 30 sec-

onds in our testbed) for learning routes with better costs or for updating the

costs of the current route.

4.2 Problem Statement

A pure-hybrid channel allocation approach (such as HMCP [10]) is optimized

for providing higher system throughputs for non-delay sensitive applications.

However, a main drawback with the hybrid channel allocation approach is

the channel switching delay associated with the wireless radio hardware and

software. For instance, the channel switching delay Ts in our hardware is

approximately 5 ms. This includes several components such as delays due
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to stopping interrupt service routines of the driver, tuning to the new fre-

quency, re-starting the interrupt service routines and sensing the medium.

To compensate for the higher switching delays, it is advisable to spend a

non-trivial amount of time in a channel, before switching to another channel

for amortizing the switching costs. Additionally, consider a scenario where

there are multiple packets to be sent by a node, each on a different channel.

In this case, while sufficient time has to be spent transmitting packets on the

current channel before switching to the next channel, there has to be a limit

on the time spent on any single channel. In the implementation used for

our experiments, the minimum time spent on a channel, Tmin, is 20 ms, and

the maximum time spent on a channel, Tmax, before switching to another

channel that has packets waiting to be sent is 60 ms. The relevance of these

parameters and the procedure used for choosing these values are discussed

in more detail in [36]. Thus, the channel switching delay Ts along with Tmin

and Tmax together may add to the overall transmission time of a packet.

To illustrate more on the switching delays, we discuss the following simple

experiment.

Figure 4.1: Topology used for ping
experiments.

Figure 4.2: Results for pinging the
nodes in flooding mode.

4.2.1 Ping Experiment

In this experiment, we use up to five wireless nodes that are placed across

different offices in our lab and arranged in a linear topology as shown in the

Figure 4.1. We initiate one hop, two hop, three hop, and four hop pings

in flooding mode with 1500 byte packets. In flooding mode, consecutive
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ping requests are sent after a user specified interval without awaiting a ping

reply. We used an interval of 0 seconds (which is the default in our system)

between consecutive ping packets. We plot in Figure 4.2 the resulting average

round trip time (RTT) returned by ping when all the nodes use four different

schemes:

• Fixed: All the nodes are allocated the same fixed channel. This makes

the network behave like a single channel network. However, the switch-

able radios are free to switch across the remaining channels for sending

broadcast hello packets. The fixed radio is used for sending the hello

packets on the fixed channel.

• Static: The nodes are assigned channels using the centralized static

channel allocation scheme proposed in [27] with five channels. No

broadcast hello packets are sent in this scheme.

• HMCP5: The nodes are assigned channels using the hybrid multi-

channel protocol with five channels. Like the Fixed scheme, both the

fixed and the switchable radios are used for sending the broadcast hello

packets on all the five channels.

• HMCP2: The nodes are assigned channels using the hybrid multichan-

nel protocol with only two channels. Note that in the case of HMCP2,

the switchable radios do not switch channels as there is no other chan-

nel to switch (the other channel is allocated to the fixed radio). The

broadcast hello packets are sent only on these two channels.

We can readily observe from Figure 4.2 that the average RTT in the case

of HMCP5 is significantly higher than the other channel allocations. Fur-

thermore, we observe that the RTTs become worse as the number of hops

increase. Finally, we also observe that the RTTs in the case of HMCP2 are

much lower than HMCP5 and the Fixed cases, but higher than the Static

case. This is because, in HMCP2, there are only two channels used for allo-

cation versus five channel in the case of Static. Therefore, Static has lower

contention resulting in a lower delay than HMCP2. Furthermore, HMCP2

has to transmit a periodic hello every 5 seconds on both the channels. Ad-

ditionally, in the case of HMCP (both with 2 channels and 5 channels), our

system can schedule transmissions on only one channel at a time [36]. This
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is because, the HMCP protocol makes use of a special functionality of the

Linux kernel, called a ‘bonding driver’ (Section 4.1.1 in [36]). A feature of the

bonding driver is to ‘bond’ multiple physical wireless interfaces into a single

virtual interface. Furthermore, the driver creates a single network address

common for all the physical wireless interfaces (Section 4.2 in [36]). As a

result, the packets can be sent on only one interface at a time. Thus, when

there are transmissions scheduled on a switchable radio, the packets to be

sent on a fixed radio have to be delayed (and vice-versa). This can add more

delays in the case of HMCP. The bonding driver feature is also used in our

implementation of the Fixed scheme, and as a result similar delays will be

experienced by the packets using this scheme. Additionally, in the case of

Fixed scheme, the adjacent hops of a flow have to contend for channel ac-

cess as they are both transmitted on the same channel, increasing the delay

further.

In the case of HMCP5, few other reasons contribute to the higher delays,

as enumerated below.

1. A transmission from one node to another that are on different fixed

channels requires channel switching. This can take place at every single hop

of the path taken by the flow.

2. Because a periodic broadcast message, such as hello or a route refresh

has to be sent on every channel, the associated switching delay adds up, at

every hop, to the end-to-end delay. Any ping packets queued on a channel

other than the one in which the broadcast packets are currently being sent

have to wait until the corresponding channel is scheduled, resulting in a delay.

Assuming a channel switching delay of 5 ms, and a Tmin = 20 ms, which is

the amount of time spent on each channel, a message broadcast on multiple

channels will incur a switching delay for every channel that it switches to

(other than the fixed channel), and a delay due to the time spent on each

of the switchable channel. Thus, for a broadcast on 5 channel, a delay of

((5− 1)× 5 + (5− 1)× 20 = 100 ms) will be experienced and for 2 channels,

a delay of ((2− 1)× 5 + (2− 1)× 20 = 25 ms) will be incurred (we subtract

a 1 in each case to account for the fixed channel, as the packet sent on the

fixed radio does not incur a channel switching delay). Thus, the periodic

broadcast messages, such as hello packets alone can cause round trip delays

of up to 2× 100 = 200 ms and 2× 25 = 50 ms, respectively. This is the
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reason for HMCP2 to have a lower delay when compared to HMCP5.

The resulting delays, in the case of HMCP5, are prohibitive for real-time,

delay sensitive applications such as VoIP or interactive gaming, and therefore

alternate mechanisms have to be formulated for routing such applications.

However, we should also ensure sufficient throughput for non-delay sensitive

applications that may co-exist in the network. This motivates a routing ap-

proach that can improve the delay and throughput performance depending

on the type of application. From Figure 4.2, we see that a static channel al-

location may be advantageous for real-time applications, as it results in the

least RTTs among the four mechanisms compared. Our proposed protocol

exploits the advantages of this allocation. In this work, we assume a dense

network scenario that has a predominantly non-delay sensitive traffic with

fewer delay sensitive applications. In fact, this mimics a real network sce-

nario, as most of the flows in the present day internet are HTTP or FTP-type

best effort traffic.

4.3 Proposed Approach

Motivated by our initial ping experiments, we develop a new routing strategy,

called SHORT, for controlling the wireless radios and the underlying chan-

nel allocation mechanism. The idea is to make the wireless radios behave

as in a static channel allocation mechanism for real-time applications and

to follow the hybrid channel allocation mechanism for non-real-time applica-

tions. Accordingly, the nodes in the network operate on one of two modes as

follows:

• Normal mode: The normal mode of operation is exactly as explained

in Section 2.2 and shown in Figure 2.2, wherein only the fixed radio

is used for receiving data and either the fixed or the switchable radio

is used only for transmitting data. The fixed radio is used for trans-

missions when the next hop node’s fixed channel is the same as this

node. Otherwise, the switchable radio is used after switching to the

next hop’s fixed channel. This mode of operation is used for non-delay

sensitive traffic.
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• Static mode: This mode is used for delay sensitive flows. In this

mode, the switchable interface is not allowed to switch channels for the

duration of the delay sensitive flow. Rather, after the route for the flow

is determined, it remains fixed on the channel of the previous hop’s1

fixed interface. Furthermore, both the fixed and the switchable radios

are allowed to receive and transmit. In other words, the switchable

interface also behaves like a fixed interface for the duration of the delay

sensitive flow.

Note that only those nodes that lie in the path of a delay sensitive flow

operate in static mode. The remaining nodes in the network continue to

behave as in the normal mode. Furthermore, the nodes that are in static

mode revert back to normal mode of operation once the delay sensitive flow

ends. (A flow ends if there are no packets with the same flow identity for

a certain duration of time.) The associated protocol steps for getting back

to normal mode involve restoring the channel switching capabilities of one

of the radios and updating the neighbors on the current fixed channel used.

While the channel allocations in our protocol are based on HMCP to simplify

implementation, any existing dynamic channel allocation can be used, in

general.

Figure 4.3: SHORT protocol operation.

We now explain this concept more clearly using the illustration in Fig-

ure 4.3. The figure shows a traffic flow from node A to C via node B. Let the

channels allocated to the fixed radios of the nodes A, B, and C be labeled 1,

2, and 3, respectively. Accordingly, during the static mode of operation, the

switchable radio of node C is fixed to channel 2, which is the fixed channel

of node B. Similarly, the switchable radio of node B is fixed to the channel 1,

1The terms ‘previous hop’ and ‘next hop’ imply the appropriate nodes in the path as
seen by a node in the ‘source to destination’ direction of the flow.
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which is the fixed channel of node A. Thus, traffic from A to B flows on chan-

nel 1, and that from B to C flows on channel 2. Moreover, the switchable

radios on nodes B and C receive the traffic on these channels transmitted

by the fixed radios of nodes A and B, respectively. Observe that any traf-

fic from C to A can be routed using the same configuration, except that the

switchable radios will be sending traffic that will now be received by the fixed

interface of the nodes B and A. Thus, this setting enables a bi-directional flow

without requiring any channel switching. We would like to point out that

the switchable interface of node A is not required to be fixed on any channel

in this example, and is free to switch across channels as in the normal mode.

Because in this example the nodes B and C behave as in a static channel

allocation (both the radios are non-switchable and every node on the path

shares a channel with the adjacent hop nodes), we call this static mode.

In the static mode of operation, a node does not send a broadcast message

on all the channels (unlike the normal mode of operation, see Section 2.2).

Instead, it simply forwards them on the channels to which the two radios

are fixed. Note that this may result in a few nodes not being aware of the

channel used by their neighboring nodes. We require in our protocol that two

nodes involved in a direct communication be aware of each other’s channels

(as otherwise the nodes cannot decide on which channel to transmit). This

may result in a node losing connectivity with the nodes that are on a channel

different from those on which the broadcast messages are sent. When several

such nodes lose connectivity with each other, this can eventually result in a

network partition. To avoid such a scenario, we propose a channel re-selection

mechanism that works in tandem with the routing protocol. More details of

the channel re-selection mechanism are explained later in this section.

4.3.1 SHORT Protocol Operation

We now discuss the details of the SHORT protocol. We assume that the in-

formation whether the flow being routed is delay-sensitive or not is available

at the routing layer of the source node. Such information can be passed on

from the upper layers by, for instance, using the ToS (type of service) field

in the IP header. Some of the VoIP applications such as session initiation

protocol (SIP) have the service type information in-built in the packet head-

ers [37]. We now present the protocol sequence executed for a delay sensitive
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Figure 4.4: SHORT protocol steps.

flow. The sequence of procedures carried out for a non-delay sensitive flow is

as done in the multichannel routing protocol, explained in [12, 3, 38], and is

not reproduced here. The protocol mechanism described for delay sensitive

flows, however, is a modification of the multichannel routing protocol and

to avoid duplication of work, we present only the relevant modifications to

the multichannel routing protocol. The protocol steps discussed below are

illustrated using the example in Figure 4.4.

Once the source node determines that its flow is a delay sensitive flow, the

following steps are performed:

1. The source node (node A in Figure 4.4) initiates a route request message

(RREQ) along with a special flag, isRealTime, to indicate that the

request is for a real-time flow and broadcasts it on all the channels, if it

is in normal mode, or on the two fixed channels if it is in static mode.

2. Any intermediate node (nodes B and C in Figure 4.4), that is not the

destination, simply re-broadcasts the RREQ message on all channels,

if it is in normal mode, or on the two fixed channels if it is in static

mode.

3. The destination (node D in Figure 4.4), upon receiving the RREQ, cre-

ates a route response (RREP) message and unicasts the RREP along

with the isRealTime flag (copied from RREQ) to the node from which

the corresponding RREQ was received. Additionally, it takes the fol-

lowing actions only if the channel on which the RREP is unicast (which
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is the fixed channel of the next node to whom the RREP is to be sent)

is different from its own fixed channel:

(a) The node sends a broadcast hello message on all the channels.

However, in this case, the node includes the flag isRealTime along

with two channel identifiers. One is the fixed channel that it has

been operating on, and the other is the channel over which the

above RREP is unicast. (Note that the original hello message

described in Section 2.2 contains only the fixed channel informa-

tion.) The cost associated with this broadcast is considered as

part of the route setup cost, which does not affect the delay ex-

perienced by the delay sensitive packets after the route has been

setup.

(b) The node fixes its switchable interface on the channel over which

the RREP message is unicast and uses this interface for sending

any data in this direction. In the example in Figure 4.4, node D

fixes its switchable radio to channel 3 (fixed channel of node C)

over which it unicasts the RREP.

(c) The switchable interface is also informed to start receiving packets

on this channel.

4. Any intermediate node, upon receiving the RREP along with the isRealTime

flag, forwards the RREP message to the node from which it received the

corresponding RREQ message. Furthermore, the intermediate node, in

addition to performing the set of operations described in Step (3) when

the RREP is unicast on a channel different from its own fixed channel,

also performs the following:

(a) The node creates a routing entry for the next hop node and uses

the fixed interface for sending data in this direction of flow (for-

ward direction). Thus, nodes C and B in Figure 4.4, in addition

to fixing their switchable radios to channels 2 and 1, respectively,

use their fixed radios to send packets in the forward direction.

5. The source node, upon receiving the RREP, starts sending the packets

after creating the routing entry for the next hop node through its fixed

60



interface. In Figure 4.4, this operation is performed by node A, which

after receiving RREP starts sending packets through its fixed radio.

Once the radios of the nodes in the real-time flow’s path are fixed based on

the above steps, any transmissions by these nodes (including broadcasts) are

restricted to the two fixed channels. Observe that any non-real-time existing

in the chosen real-time path prior to the arrival of the real-time flow may be

affected because of this protocol. In particular, an existing non-real-time flow

may be dropped during the above process as the radios on the corresponding

path will no longer be allowed to switch across channels. We handle this

situation by initiating a RERR message, which gets forwarded to the source.

The source can then re-initiate a new RREQ message to find a new route.

4.3.2 Channel Re-selection Mechanism

The channel re-selection mechanism is introduced to maintain network con-

nectivity in spite of nodes in static mode restricting their broadcast to only

the two channels that their interfaces are fixed on. The channel re-selection

mechanism is only executed by those nodes that lie adjacent to the path

chosen for the real-time applications and are in the normal mode. For

this purpose, the nodes make use of the broadcast hello message with an

isRealTime flag broadcast by a node in the path of a real-time flow before

switching to the static mode (see Section 4.3.1 step 3a.). Upon receiving

the broadcast message with an isRealTime flag, the nodes initiate a channel

re-selection mechanism and perform the following steps:

1. The node first checks if both of the channels contained in the hello

message are different from its fixed channel. If its fixed channel is the

same as one of the channels in the hello message, the node discards

the message and takes no further steps.

2. If both the channels in the hello message are different from the node’s

fixed channel, then the node selects one of the two channels, chosen

uniformly at random, as its new fixed channel.

3. If more than one hello message with an isRealTime flag is received

(which may happen when a node is adjoining two nodes that lie in
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the path of a real-time flow), then the node first tries to choose the

channel that is common to a majority of the hello messages. Thus,

the channel re-selection mechanism is designed to improve the chance

of maintaining connectivity with more nodes in the network. If none of

the channels is common to all the hello messages, then the node just

selects one of the channels contained in the hello messages, uniformly

at random, as its fixed channel.

When many of the flows in the network are real-time, the channel re-

selection mechanism will tend to make the overall network behave as in a

pure-static approach, while when most flows in the network are non-real-

time, the network tends to behave as in a pure-hybrid approach.

4.3.3 Implementation Details

Figure 4.5: Protocol architecture with SHORT-specific components in gray.

The architecture of our multichannel protocol along with the SHORT

implementation is shown in Figure 4.5. The SHORT protocol consists of

two main components, namely the SHORT controller or C-SHORT and the

SHORT executor or E-SHORT. The C-SHORT is implemented in the user

level and interacts with the multichannel routing protocol for creating rout-

ing entries compatible with the static mode of operation whenever a real-

time flow is to be routed. Furthermore, it is also responsible for setting the

isRealTime flag when a new route discovery for a real-time flow is initiated.

Finally, C-SHORT indicates to the E-SHORT component, through a special
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IOCTL control message, whether to transition to static mode or revert back

to normal mode. (IOCTL messages are used commonly in Linux for any

interaction between the user space and kernel space code.) If the message

is for transitioning to static mode, then the channel to which the switchable

radio has to be fixed from now on is also specified.

The E-SHORT component, on the other hand, is implemented as a kernel

module and resides as part of the Linux ‘bonding’ module.2 The E-SHORT

component is responsible for fixing the switchable radio to the channel sup-

plied by the C-SHORT component and for restoring the switchable radio back

to normal mode, depending on the message from the C-SHORT component.

In addition to the two main components, SHORT protocol also consists

of a smaller third component, called SHORT-NET, which interacts with the

Linux netfilter hooks for making the switchable interface behave like a fixed

interface for real-time flows. In normal mode, the netfilter hook is designed

to drop any incoming packets on the switchable radio. The SHORT-NET

overrides this and lets the switchable radio accept the packets while in static

mode. The relevant control messages are passed on from the C-SHORT as

an IOCTL message.

4.4 Experimental Results

In this section, we present the experimental results to illustrate the perfor-

mance benefits of the SHORT protocol. Before proceeding further, we first

present an overview of our testbed and the associated hardware.

4.4.1 Testbed Overview

We use a multi-channel, multi-interface, and multi-hop wireless testbed called

Net-X, developed by the Wireless Networking Group at the University of

Illinois at Urbana-Champaign (UIUC). The testbed consists of more than 20

Soekris net4521 boxes distributed across various offices on the fourth floor of

the Coordinated Science Lab (CSL) at UIUC. Each testbed node has a 133

MHz microprocessor, a compact flash (CF) card slot, two PCMCIA slots,

and one mini-PCI slot. We run Linux kernel 2.4.26-based operating system

2The Linux bonding module has been modified to enable multi-radio operation [3].
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on each of these boards. For our experiments, we equip the test nodes with

one mini-PCI and one PCMCIA wireless card. These wireless cards are

based on Atheros chipsets and are driven by madwifi drivers. The cards

operate in the IEEE 802.11a mode. The mini-PCI cards make use of a pair

of external antennas, and the PCMCIA card has its own internal antenna for

communication.

4.4.2 Experimental Methodology

Traffic Details:

For evaluating our protocol, we used different traffic sources for generating

real-time and non-real-time traffic. For real-time traffic, we used a tool called

D-ITG [39] for generating G.711 codec type VoIP packets for 50 seconds. The

tool generates approximately 100 byte VoIP packets every 20 ms. The same

D-ITG tool is used for generating non-delay sensitive TCP and UDP type

packets. The UDP flows are generated at a rate of 6 Mbps and the packet

sizes are fixed at 512 bytes. The size of the TCP packets on the other hand is

fixed at 1000 bytes, and the packets are generated at the rate of 1000 packets

per second. Both UDP and TCP packets are generated for a duration of 50

seconds. Every wireless radio transmits at the maximum power and the

physical rate of transmission is fixed at 6 Mbps. For all the experiments

we use five orthogonal 802.11a channels for allocation, namely the channel

numbers 36, 48, 64, 149, and 161.

Protocols Compared:

We compare the performance of our SHORT protocol with HMCP [3] and

two other protocols as described below:

Static channel allocation: For this case, we allocate channels to the

radios using a centralized static channel allocation methodology. In other

words, knowing the connectivity graph among the nodes, we allocated chan-

nels to the two radios in each node such that every node has at least one

channel in common with their neighbors. The channel allocation technique is
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based on the scheme proposed in [27]. Any broadcast packets in this scheme

are sent only on the two static channels.

Fixed channel for real-time traffic: This is a protocol similar to, but

simpler than, SHORT. In this protocol, while generating RREPs for route

discovery for a real-time flow, the source node also includes its current fixed

channel in the RREQ message. Every intermediate node re-broadcasts the

RREQ message, as usual. However, while forwarding the RREP message

the corresponding node changes its own fixed channel to that of the source

node (which is embedded in the RREP message). Thus, all the nodes in

the path of a real-time flow use their fixed interface for routing and tune

the fixed interface on the same channel. The advantage of this scheme is

that the switchable radios in the nodes need not be fixed and can remain

switchable as in normal mode of NetX (and can continue sending the hello

messages periodically). As a result, unlike with SHORT, there will be no

loss of connectivity. We call this the fixed mode of operation. Figure 4.6

illustrates this protocol. Here, we show a real-time flow from node A to C

via node B. All the three nodes use their fixed interface for this flow, and

tune the interface to channel 1.

Figure 4.6: Fixed mode operation.

Performance Metrics:

The D-ITG tool is capable of generating per flow statistics on the minimum,

maximum, and average delays, average jitter, and throughput achieved. Be-

cause throughput is not a concern for real-time flows, and delays are not

important for non-real-time flows, we measure the average and maximum

delays and jitters (which is the variance in time of arrivals of adjacent pack-

ets at the destination) for the real-time traffic and the throughput for the
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non-real-time traffic.

Time Synchronization:

For measuring the delays, it is important to have a common notion of clock

between the traffic sources and destinations. However, the wireless nodes

used have imperfect clocks and proper time synchronization is necessary for

measuring time delay values between the sender and receiver. We therefore

use ntpdate periodically on these nodes for synchronizing their time values.

Because the nodes are not connected to the internet, we use a desktop com-

puter as the network time protocol (NTP) server and synchronize all the

nodes relative to this server. We use the local wired LAN connectivity for

time synchronization between the nodes and the desktop NTP server. Using

this scheme we get an accuracy close to 50 µs.

4.4.3 Results for a Multihop Setting

The first set of experiments are conducted to demonstrate the performance

of our protocol in a multihop setting.

Unidirectional flows:

For this experiment we first generate a VoIP flow between a source and a

destination that is located one hop away from the source. We then repeat this

for destinations that are two hops, three hops, and four hops away from the

same source node. In each case, we measure the average delay, the maximum

delay, and the mean jitter experienced by the packets. We repeated the

same set of experiments 10 times, each time choosing different source and

destination nodes. The results averaged over the 10 different one hop, two

hop, three hop, and four hop routes are plotted in Figure 4.7. In all the

figures presented in this section, the plots corresponding to the static channel

allocation are labeled as Static and those obtained for the case where we use

the fixed channel for real-time flows are labeled as Fixed.

From Figure 4.7(a), we first observe that the average delays experienced by

the VoIP packets in the case of SHORT and Static are always lower than 5 ms,

irrespective of the number of hops. (As a comparison, a one hop transmission

using 802.11a experiences a typical delay of 2 ms.) We also observe that the
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(a) Average delay (b) Maximum delay

(c) Mean jitter

Figure 4.7: Performance comparison for multihop unidirectional VoIP flows.

delays in the case of Fixed and HMCP allocations are much higher than

SHORT or Static allocation, and the difference increases significantly as the

number of hops increase. As mentioned in Section 4.2, the main reason for

higher delays in the case of HMCP is the need to switch the channels at every

hop along the multihop path. In the case of Fixed channel allocation, the

flows experience similar or lower delay than HMCP. However, the delays are

still high when compared to SHORT or Static. The high delay in the case

of Fixed scheme is for two reasons. First, in the Fixed scheme consecutive

hops transmit on the same channel when routing a real-time flow. Because

of the resulting contention, one hop of the flow has to wait for an adjacent

hop to finish transmission. The second reason for this is that the fixed radio

has to share its transmission opportunity with that of the packets in the

switchable radio, as explained in Section 4.2. The switchable radio is used

for sending the periodic hello packets, and due to hardware restrictions,

only one radio can transmit on any one channel at a time in our system.
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These two reasons cause the delays to be, sometimes, higher than HMCP. In

the case of HMCP, though the average delay of about 38 ms for the 4 hop

case is acceptable for VoIP packets, the rate at which the delay grows with

the number of hops is significant and the delays may become unacceptable in

the case of real multichannel deployments, where more than 4 hops may be

common. Furthermore, as we can observe from the maximum delay values

in Figure 4.7(b), some of the packets in HMCP experienced delay of more

than 200 ms, which is certainly unacceptable for VoIP. We also observe that

the maximum delay values for SHORT and Static cases are well under 50 ms

and do not increase significantly with the number of hops. Finally, the jitter

values shown in Figure 4.7(c) suggest that packets using HMCP undergo a

significant increase in jitter as the number of hops increases, which may make

it unsuitable for some of the real-time applications, such as video.

Bidirectional flows:

(a) Average delay (b) Maximum delay

(c) Mean jitter

Figure 4.8: Performance comparison for multihop bidirectional VoIP flows.

In this case, we generate two VoIP flows, one from a source to a destination

68



and the other from the destination to the source. The mean and maximum

delay values, and the mean jitter averaged over all the flows and over 10

different pairs of nodes (each pair constituting a different run), chosen from

different locations in the network for each scenario, are plotted in Figure 4.8.

We first observe that the delays in the case of SHORT and Static mechanisms

are similar to those in the unidirectional case. This is because, in the case of

SHORT protocol, once a route is established between two nodes, the same

route is used both for the forward and reverse traffic. The same is true in the

case of Static mechanism. The delay values for both the Static and SHORT

cases, however, are higher than the unidirectional case. This is once again

due to the fact that only one radio can transmit in our system at any instant.

Similarly, the delays in the case of Fixed mechanism are also higher for the

same reason. The increase in the delays in the case of HMCP from that

in the unidirectional case is mainly because significant time is spent by the

switchable radio in switching between the forward and reverse traffic.

VoIP with UDP and TCP (non-delay sensitive)

Figure 4.9: Average delay of VoIP
packets sent with a UDP flow.

Figure 4.10: Throughput of UDP flow
sent with a VoIP flow.

For this experiment, we first generate a VoIP flow along with a UDP flow,

both from the same source and targeted at the same destination. Figure 4.9

shows the average delay experienced by the VoIP packets, and Figure 4.10

shows the throughput achieved by the UDP packets, all averaged over 10

different source-destination pairs. Next, we generate a VoIP flow along with

a TCP flow as before, and the delay and throughput values of the VoIP and

TCP packets, respectively, are plotted in Figures 4.11 and 4.12.
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Figure 4.11: Average delay of VoIP
packets sent with a TCP flow.

Figure 4.12: Throughput of TCP flow
sent with a VoIP flow.

We observe from the plots that the throughputs for both UDP and TCP

flows remain almost the same, irrespective of the number of hops, in the case

of SHORT and Static protocols. However, we observe that the throughputs

reduce with the number of hops in the case of Fixed and HMCP. In the case of

HMCP, one reason for this is that in our system, when a radio switches from

one channel to another any unsent packets in the packet queue are dropped.

This is explained in more detail in [36]. Additionally, in the case of TCP

flows, the data and the ACK packets, sent in opposite directions, require

that the switchable radio be switched between the two directions, worsening

the throughput further. When the Fixed scheme is used, the VoIP packets,

TCP or UDP data, and ACK packets (in case of TCP) are all sent on the

same channel, and the increase in contention reduces the overall throughout.

In the case of SHORT protocol, the TCP and the UDP flows benefit from the

channel assignment made for the VoIP flows, which does not incur any delays

or packet losses due to channel switching. The throughput performance in

the case of SHORT, therefore, is similar to that of Static.

We observe that the delay values in Figures 4.9 and 4.11 are lower than

those observed in the unidirectional flows scenario. The reason for this may

be because the delay values are only averaged over the VoIP packets that are

successfully received at the destination. When there are additional packets

from TCP or UDP, some of the VoIP packets are dropped as a result of

a buffer overflow. These dropped packets are not accounted in the delay

measurements; we believe this to be the reason for the lower delay values

compared to the unidirectional case.
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4.4.4 Results for Multiple Single Hop Flows

(a) Average delay (b) Maximum delay

(c) Mean jitter

Figure 4.13: Performance comparison for multiple one hop VoIP flows from
a node.

We now evaluate the capability of the protocols in supporting multiple

flows from the same source node, as such a scenario may usually involve

several channel switches when each flow is sent on a different channel. For

this purpose, we choose a source node and four other nodes that are within

one hop from the source node. We then generate multiple VoIP flows (varied

from one to four) between them. Once again, we choose 10 different source

nodes and a set of four nodes situated at different locations and distances

from each other (but still within one hop from the source) in our network

and present the average values across the different realizations. The average

and maximum delay values per flow along with the mean jitter values are

plotted in Figure 4.13. We observe from the delay plots that the average and

maximum delay value does not vary much with number of flows in the case

of SHORT, Static, and Fixed mechanisms, while it increases significantly for
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HMCP. This is because all the flows are sent over just a single hop, and in

the case of SHORT and Fixed schemes, all the transmissions take place on

the same channel. This is due to the fact that all the receive nodes in the

case of SHORT tune their switchable radio to the fixed channel of the source

node; and in the case of Fixed scheme, all the fixed radios are assigned the

same channel. For the Static scheme, the source node and all the destination

nodes share at least one channel in common. In any case, there is no channel

switching required in any of these three schemes. When HMCP is used,

however, the switchable radio of the source node has to switch across the

fixed channel of the receiving nodes. This results in an increase in the delay

as the number of flows increase.

This shows that HMCP is not capable of carrying multiple real-time flows

from the same source to neighbors on different channel, as it requires sig-

nificant channel switching. From the jitter values, we observe that HMCP

performs poorly while handling multiple flows. Higher jitter values mean

that the amount of jitter buffer at the receiving node should also be higher,

so as to prevent packet losses. The jitter performance for SHORT and Static

are fairly stable irrespective of the number of flows.

4.5 Simulation Results

Figure 4.14: Throughput comparison
with more VoIP flows in a 100 node
network.

Figure 4.15: Delay comparison with
more VoIP flows in a 100 node
network.

We performed simulations using ns-2 to evaluate our protocol on a bigger
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network to better understand its scalability. We generated 100 nodes dis-

tributed uniformly at random on a 150m x 150m area. The transmission

range of the nodes is fixed at 30 m. We then generated a combination of

TCP and VoIP flows from 50 different source nodes chosen uniformly at ran-

dom to 50 different destination nodes, again chosen uniformly at random.

The number of VoIP flows is varied from 5 to 25 (in steps of 5), and the

remaining flows are TCP. The TCP flows have a frame size of 1000 bytes,

while the VoIP flows have a packet size of 100 bytes generated at a constant

rate of 1 Mbps (over an UDP transport).

We simulated the SHORT protocol, the static channel allocation, and

HMCP channel allocation schemes and in each case calculated the overall

throughput achieved by the TCP flows and the end-to-end delay of the VoIP

flows. Figure 4.14 shows the TCP throughput values, and Figure 4.15 has the

VoIP delay values. We observe that because HMCP protocol is optimized for

achieving better throughputs, it results in a higher throughput for the TCP

flows. In the case of SHORT protocol, the throughout performance is better

than the static channel allocation when the number of VoIP flows is small.

However, the throughput gets worse than that of static channel allocation

scheme when the number of VoIP flows in the network increases (more than

20 flows in our simulations).

Similarly, we observe from Figure 4.15 that HMCP has the worst delay

performance of the three schemes. However, the VoIP flows using SHORT

protocol start exhibiting higher delays as the number of flows increases. The

reason for decreased TCP throughput and higher delays is that, as the num-

ber of VoIP flows increases in the network, more nodes end up not switching

their radios. This results in the flows taking a longer route. This is illus-

trated in Figure 4.16. Here, we have plotted the average number of hops

taken by the TCP flows. We observe from the plot that the flows in HMCP

have the least number of hops. In the case of SHORT, the number of hops

keeps increasing as the number of VoIP flows increases resulting in a route

longer than the static channel allocation scheme in the case of 25 VoIP flows.

The per-hop delay in the case of SHORT is still smaller than HMCP, as there

is no channel switching delay associated with SHORT. The number of hops

in the case of Static is high because of the requirement that two nodes share

at least one common channel, while utilizing all the available channels may

result in a longer route. This is also observed in [29]. These results suggest
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that the SHORT protocol, though it may be useful when the network is not

dominated by real-time flows, may start performing poorly when most of the

flows in the network are real-time.

Figure 4.16: Number of hops taken by TCP flows.

4.6 Discussion

In this chapter, we proposed SHORT, a routing approach that exploits the

benefits of both static and hybrid channel allocation strategies. We have

implemented the protocol on a real multichannel testbed and using experi-

mental data we have demonstrated the performance benefits of the SHORT

protocol over a hybrid channel allocation protocol, called HMCP. All our

experimental results illustrate that the SHORT protocol can provide low de-

lay multihop paths for real-time traffic, while not significantly affecting the

throughputs of non-real-time traffic when there are only few real-time flows

in the network. Our results also show that the delay performance of real-

time flows using SHORT protocol is comparable to that of a static channel

allocation method. We also simulated the protocols using ns-2 to better

understand their performance in a bigger network. The simulation results

illustrate the limitations of the SHORT protocol, as they suggest that the

performance of the protocol deteriorates when the number of real-time flows

in the network increases.

In addition to the benefits and limitations of the SHORT protocol discussed
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in the previous sections, there are two important complexities associated with

a practical realization of this protocol, as enumerated below:

1. The SHORT protocol requires that the network is capable of re-selecting

a channel during route setup. This relies on the fact that the broadcast

hello messages sent by the nodes for this purpose are received loss-free

by the neighbors. If a significant number of these hello messages are

lost, then the network may get disconnected for reasons discussed in

Section 4.3.2.

2. The SHORT protocol may not be suitable in a multichannel network

where some nodes have only one radio. In this case, the radios may have

to be switched to maintain network connectivity, and implementing

SHORT will result in the network tending towards a single channel

network.

4.7 Future Work

The SHORT protocol reallocates channels based on static channel allocation

starting from an initially throughput optimized hybrid channel allocation.

One possible future direction to explore will be to come up with an initial

hybrid channel allocation that requires fewer channel re-selections when the

static scheme is introduced. This can be realized by allocating the same

channel to multiple neighbors of a node dynamically based on their traffic

usage. Achieving such a scheme requires stringent interference prediction

and an efficient neighbor discovery mechanism.

Another possibility will be to develop a routing protocol that jointly chooses

the channel allocation during route setup, which is optimized for both through-

out and delay. Such a joint channel and route selection may experience higher

route setup delays. However, it may be beneficial for flows that are sustained

for a long time.
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CHAPTER 5

VARIABLE WIDTH CHANNEL
ALLOCATION BASED ON TRAFFIC

DEMAND

In the previous chapters we assumed that the width of the channel allocated

to a node is fixed. This is true with most of the existing multichannel pro-

tocols. For instance, the channel width in the case of IEEE 802.11a is fixed

at 20 MHz. When the traffic load is low, it may be sufficient to use only

a fraction of the fixed width channel to guarantee the required data rate.

Alternatively, when the traffic load is large, then more than the spectrum

available in the fixed width channel may be required. However, the current

standard method of allocating fixed width channels does not allow for this

flexibility. If, instead, the spectrum widths are allowed to be variable, then

the flows that require less spectrum can use a narrow spectrum width, allow-

ing the remaining spectrum to be used by flows that have higher loads. While

some wireless standards, such as IEEE 802.11n, allow for variable channels

widths, there are no existing provisions to allow for dynamically varying the

spectrum widths based on traffic needs.

In this chapter, we introduce a protocol for variable width channel allo-

cation. The motivation of our protocol is to admit a flow only if there is

sufficient spectrum to satisfy its rate requirement. We perceive that our pro-

tocol may be useful in a distributed wireless sensor network [40], where every

node has a certain amount of data to be routed. Based on the availability of

the spectrum, the nodes can decide whether or not it is possible to send the

data at the required rate.

The channel width is selected jointly with an appropriate channel during

routing. The technique used for partitioning a channel based on packet size,

as introduced in Chapter 3, can still be applied in addition to choosing a

variable width channel.

Using variable width channels has gained significant interest recently. For

instance, the authors of [9, 21] have leveraged channel width adaptation for

the purpose of load balancing. The authors of [41] have considered variable
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width channels to minimize the adjacent channel interference in the network

by allocating narrow width channels to the nodes whenever the load is small.

In [42], adapting the channel widths is shown to offer efficient spectrum

utilization.

In the subsequent sections of this chapter, we start by exploring the related

literature. We then present the network and interference model, followed by

our variable width channel allocation protocol. We then present simulation

results to validate the protocol benefits.

5.1 Related Work

To the best of our knowledge, most of the existing work on QoS provisioning

for wireless networks has focused on fixed channel widths. In [32], Tang

et al. have proposed separate optimization problems for channel allocation

and QoS routing for multi-channel, fixed-width wireless networks. In [43],

Xu et al. have presented a QoS framework over LANMAR routing with

a single fixed width channel per node. They propose a probing-free call

admission control (CAC) mechanism and thus claim lower admission delays.

In [44], the authors discuss a link-state approach coupled with a core node

set extraction. In [45], Perkins et al. have presented QoS extension for the

Ad Hoc On demand Distance Vector (AODV) routing protocol [11]. While

this work focuses primarily on signaling and path setup, we extend this work

by developing algorithms to allocate spectrum widths to achieve QoS goals.

In [46], Liao et al. have attempted to provide a probe-ticket based approach

for provisioning QoS. The unique aspect of their route discovery mechanism

is what they call a ticket-splitting approach. QoS provisioning is achieved by

allocating bandwidth to every sub-ticket on every intermediate node during

route-discovery. This approach may present an interesting solution in the

absence of a contiguous spectrum at certain nodes.

The notion of bandwidth adaptability in wireless networks has been re-

cently researched in [9] and [21]. In this work, the authors have demonstrated

bandwidth adaptability in 802.11a/b wireless networks using a wireless em-

ulator and a few experiments. The authors show that narrow bandwidth

transmissions can have a greater communication range and experience re-

duced interference when compared to wide-channel transmissions. On the
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other hand, they also show that wide-channel communication can achieve

higher data rates and increase the overall spectrum utilization in the net-

work. We propose to use the inherent tradeoff involved between narrow and

wide channel communication for differentiating the traffic flows with the goal

to provide QoS depending on the application needs.

5.2 System Description

Figure 5.1: An illustration of a spectrum with different center frequencies
and channel widths.

We use the multichannel, multi-radio model developed in Chapter 2. To

distinguish amongst the possibilities of a channel having multiple widths, we

use the term ‘channel’ to describe just the center frequency of operation.

The width of the channel can be one of k values centered around this center

frequency. We assume that the center frequencies of the channels are fixed

and their widths are adapted around these fixed center frequencies. However,

our protocols are applicable to scenarios where the center frequency can also

be varied.

As an illustration, if we consider the spectrum shown in Figure 5.1, the

center frequencies f1, f2, . . . indicate the channel of operation and the widths

w1, w2, . . . indicate the width of the channels. If a channel l, currently op-

erating with a width w1, is to be expanded, it is achieved by occupying

a portion of channel (l + 1) (if available) and an equal portion of channel

(l − 1) (if available), thereby maintaining the symmetry around the center

frequency. Therefore, the width of a channel depends on the availability of

spectrum from its neighboring channels as elaborated later in Section 5.2.1.
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Note that according to our system architecture discussed in Chapter 2 (see

Section 2.2), every node is equipped with two radios, namely a fixed radio

and a switchable radio. The fixed radio is used for transmitting and receiving

data on the fixed channel, and the switchable radio is used for transmitting

data on a channel other than the fixed channel. The channel on which a node

transmits depends on the fixed channel of the next hop node. When variable

channel widths are used, the radio used for transmitting in a node must use

the same channel width, in addition to the center frequency, as that of the

next hop’s fixed radio.

5.2.1 Interference Model

Because the channels can be operated on different widths, the amount of over-

lap between the adjacent channels can significantly affect the cross-channel

interference between the channels. The effect of partial overlap between chan-

nels has been studied in the literature [47, 48, 49]. As concluded by [49], the

degree of interference between two partially overlapping channels depends

on the actual extent of overlap and the spatial separation of the nodes that

use the channels. Based on this conclusion, we assume that adjacent chan-

nels cannot choose arbitrary widths, if they are allocated to nodes that are

separated by less than or equal to two hops. (The term “hop” is defined as

follows: If two nodes can have a direct communication link between them,

then they are said to be within one hop from each other. If a transmission

from one node to another requires h one-hop transmissions, then the nodes

are said to be h hops away from each other.) The reason for considering

nodes within a two hop neighborhood follows from the protocol model of

interference [50], which requires a receiver to be separated by at least a two

hop distance from an interfering transmitter.

More specifically, we assume that the adjacent channels (if used within a

two hop neighborhood of each other) can reliably operate on their ‘default’

channel widths. By ‘default’ channel width, we mean the actual widths as

specified by the corresponding technology standards. For instance, IEEE

802.11a specifies the channels to be of 20 MHz wide and IEEE 802.11b spec-

ifies a 22 MHz channel. However, if one of the channels has to expand its

channel width (based on the flow requirements), then its neighboring chan-
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Figure 5.2: An illustration of allowed and disallowed channel width
expansions. A check mark indicates that the expansion is allowed and a
cross mark indicates that it is disallowed. (Figure not drawn to scale.)

nels have to use a narrower width. As an illustration, consider for instance

that some node using an IEEE 802.11a channel, say f , is currently transmit-

ting on its default width of 20 MHz. If this channel is required to expand to

a width of 30 MHz, then as explained in Section 2.2, it can do so by occupy-

ing 5 MHz from channel (f + 1) and another 5 MHz from channel (f − 1),

depending on availability. By availability, we mean that the flows on chan-

nels (f + 1) and (f − 1) are using widths that are smaller than their default

widths. Thus, the channel width expansion in this example is possible only

if both the channels (f + 1) and (f − 1) are using at the most 10 MHz (as

the channel width has to be symmetric around the center frequency). This

is illustrated in Figure 5.2.

In addition to the criteria on channel width adaptation, to avoid a potential

co-channel interference, we also require that no two nodes that are within

two hops from each other use a channel with the same center frequency

(irrespective of their channel widths).

5.3 Proposed Mechanism

The goal of our protocol is to determine whether a flow can be admitted

at a node based on the rate requirement of the flow and the possibility of

expanding a channel, if required, based on the channel used by its neighbors.

All the nodes are allocated an initial channel of the same width. Every

node maintains a data structure containing the center frequency, the width

of channel, and the traffic load at each of its neighbors that are within two
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hops. This data structure can be built by exchanging this information with

each of the neighbors periodically.

When a new flow is to be routed, every node checks to see if the flow can

be admitted based on the flow’s rate requirement and the available spectrum

at a node. (We assume that we can estimate the rate requirement of the

flows from its traffic pattern using existing techniques in the literature, such

as [51, 52].) A node denies admission to a flow if its rate requirement cannot

be satisfied. The steps involved in routing along with the routing metric

used and the admission control mechanism are discussed in the following

subsections.

5.3.1 Routing Protocol

We modify the popular AODV routing protocol [11] for determining the

routes based on the rate requirements of the flows. We can estimate the rate

requirement of the flows from its traffic pattern using techniques proposed

in [51, 52]. The rate requirement of a flow can then be converted to the

channel width required to satisfy the rate. The steps involved in routing a

flow are as follows:

1. The source node constructs a ‘route request’ (RREQ) message contain-

ing the destination node’s IP address and the channel width required

for the flow, reqdWidth. The source then broadcasts the RREQ mes-

sage using all allowed channel widths on all channels. This is done to

ensure that every node receives the RREQ message irrespective of the

channel and the width being used.

2. Every intermediate node receiving the RREQ performs an admission

control mechanism, as follows. Let c be the current fixed radio channel

used by a particular intermediate node.

(a) The node checks to see if the channel c is used by any of the nodes

within its two hop neighborhood (interfering nodes).

i. If the channel c is in use, the node scans through all the

channels until a free channel that is not used by any of the

interfering nodes is found.
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ii. If no free channel can be found, the node drops the RREQ

message.

(b) The node then checks to see if the current channel width is suffi-

cient to admit the flow.

i. If the current width is not sufficient, the node sees if the

channel width can be expanded. This depends on whether

there is sufficient spectrum in the adjacent channels that is

unused.

A. If a channel width expansion is not possible and not all

channels are tried, then repeat Step 2(a) with c being a

channel that is not tried yet.

B. If all the channels have been tried and none of them have

sufficient spectrum, drop the RREQ message.

ii. If the channel width expansion is possible, the node records

the required channel width for this flow.

(c) If the RREQ is not dropped, the node increments the hop count

in the RREQ headers. Additionally, if the node is required to

switch to a different channel for accommodating this flow, it also

increments a counter, Csw, in the header. Thus, Csw is the number

of nodes that are required to switch their channels in a route. The

node then forwards the RREQ.

3. A destination node may receive multiple RREQs. After receiving a

fixed number of RREQs, the destination sorts the routes in the increas-

ing order of the routing metric, h + Csw. The destination then sends

out a ‘route response’ message including the reqdWidth from RREQ via

the first route in the sorted list. The destination then starts a timer

expecting a data packet from the source.

4. An intermediate node receiving the RREP checks to see if the required

channel width can still be satisfied, as the availability of channel may

have changed since the RREQ has been forwarded.

(a) If there is not sufficient channel spectrum, the node just drops the

RREP.
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(b) If sufficient channel is still available, the node forwards the RREP

and changes its channel and channel width (and informs other

neighbors of the channel change using a broadcast message), if

required, as recorded previously.

5. If the timer at destination node expires without receiving any data

packets, it re-sends another RREP via the next best route, until all the

available routes are exhausted and restarts the timer.

6. The source node, upon receiving the RREP, starts sending the data

packets. If no RREPs are received, the source can re-send the RREQ

message with either the same rate requirement or a reduced rate re-

quirement.

When a flow ends, every node involved in the routing reduces its channel

width by the amount it expanded for admitting this flow, until the minimum

allowed channel width is reached. An end of a flow can be detected when

there are no packets available to be forwarded with the same flow identity

for a certain duration of time.

5.4 Simulation Results

We developed a simulator using MATLAB to evaluate our protocol. Our

simulation setup consists of 200 nodes distributed uniformly at random over

a 150 m x 150 m network. The transmission range for each node is set as

30 m and the interference range is chosen to be twice of the transmission

range (60 m). The total spectrum available for allocation is 240 MHz, which

corresponds to twelve 20 MHz channels. Each node is allocated a 20 MHz

channel, chosen uniformly at random from the 12 different possibilities. The

nodes are allowed to expand or contract its channel width as chosen from the

set {5, 10, 15, 20, 25, 30, 35, 40} MHz. The maximum data rate at which

node can transmit with a 20 MHz channel width is set as 54 Mbps. The

maximum data rates at other channel widths are scaled accordingly. Thus,

the data rate at 5 MHz is 13.5 Mbps, and at 40 MHz is 108 Mbps.

We generated a number of flows, each with a different source-destination

pair chosen uniformly at random from the set of nodes generated. The num-

ber of flows generated is varied from the set {25, 50, 100, 150, 200}. Each
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flow generated chooses a rate requirement uniformly at random from the set

{13.5, 27, 40.5, 54, 67.5, 81, 94.5, 108} Mbps. These rates correspond to the

allowable channel widths discussed earlier. The flows are started one at a

time and last until the simulation ends. For each set of flows generated, we

measure the following metrics averaged over 50 runs:

• Average number of flows accepted: This is the average across the

number of flows admitted in each run.

• Average data rate of flows accepted: This is the average of total

rate requirement of all the admitted flows divided by the number of

admitted flows in each run.

We compared the above two metrics for four different schemes:

1. Fixed Width Restricted (FWR): In this scheme the channel

widths are not changed from the fixed 20 MHz. Any flow request-

ing a rate greater than 54 Mbps is not admitted. A flow requesting a

rate of at the most 54 Mbps is admitted if the requirement can be fully

satisfied.

2. Fixed Width (FW): In this scheme, similar to FWR, the channel

widths are fixed at 20 MHz. However, a flow requesting more than 54

Mbps may also be considered for admission. When the requested rate is

more than the available spectrum at a node, then the flow is admitted

at whatever rate is possible with the available spectrum (unless the

rate possible is zero).

3. Variable Width (VW): According to this scheme, the channel width

is adapted, if required, to incorporate a new flow requiring more than

the available spectrum at a node (up to a maximum of 40 MHz). How-

ever, when a channel width expansion is not possible in the current

channel, the nodes will not search for a different channel. In other

words, the Step (2.(b).i.A) of the protocol in Section 5.3.1 is not per-

formed.

4. Variable Width and Channel (VWC): This scheme follows all the

protocol steps, including the Step (2.(b).i.A), described in Section 5.3.1.
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5.4.1 Effect of Number of Flows

Figure 5.3: Average number of accepted flows.

First, we compare the number of accepted flows and the data rate of the

accepted flows for all the four schemes for different number of flows generated.

Figure 5.3 shows the corresponding plot for the accepted flows. We observe

from this figure that the FW scheme always admits the highest number of

flows. This is because the FW scheme does not guarantee the required data

rate of the flows and admits them if a non-zero rate can be provided. The

FWR scheme performs better than the variable width schemes, except when

the number of flows generated is 25. The FWR scheme admits a flow only if

its rate requirement can be satisfied by a fixed width channel. Accordingly,

only flows that have a requirements of at most 54 Mbps are even considered

for admission. The variable width schemes (VW and VWC), on the other

hand, expand the channel width, if required, to admit a flow. Because a

channel is not re-used within a two hop neighborhood, expanding a channel

leaves less spectrum available for other flows when compared to the fixed

width schemes.

We also observe from Figure 5.3 that VWC admits fewer flows than VW

when the number of flows is large. To illustrate this difference, consider the

example network shown in Figure 5.4, where every node is within two hops

from every other node. Let there be 5 channels for allocation. The spectrum
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Figure 5.4: Illustration to compare number of accepted flows in VW and
VWC.

is shown adjacent to the network in Figure 5.4. Initially, all channels are of

equal width of 20 MHz. First, let there be a request from a flow for rate

81 Mbps at node B, allocated to channel 2. This flows requires a channel

width of 30 MHz. Therefore, both in the case of VW and VWC, channel 2 is

expanded to admit this flow. Next, there be a request for 108 Mbps (requiring

40 MHz) at node C, which is on channel 3. In the case of VW, this flow will

not be admitted as there is not enough spectrum and as channel 3 cannot

be expanded any further, symmetrically. VWC, on the other hand, searches

for a different channel when a width expansion is not possible in the current
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channel. It therefore switches to channel 4, expands the channel to 40 MHz,

and admits the flow. Later, when there are subsequent requests for channels

3 or 5, VWC will not be able to admit these flows if the requests are greater

than the available spectrum. Thus, as in steps 3 and 4 in Figure 5.4, the flows

requesting 27 Mbps (requiring 10 MHz) of channel 3 and 54 Mbps (requiring

20 MHz) of channel 5 are not admitted by VWC, while they are admitted by

VW. The total number of flows admitted by VW in this illustration comes

up to 3, while VWC admits only 2 flows. However, this scenario is more

likely to happen when there are many flows in the network as is evident from

Figure 5.3.

Figure 5.5: Average data rate of accepted flows.

The fixed width schemes, though admitting more flows than the variable

width flows, have a smaller net data rate of admitted flows than the variable

width schemes. This is shown in Figure 5.5, where we plot the total data

rate of all admitted flows divided by the number of admitted flows. Here,

we observe that VW and VWC always have a higher average data rate than

FW or FWR. This is because the FWR scheme only admits flows that have

lower data rate requirements, while the FW scheme can only offer a data

rate of at most 54 Mbps to any flow. We also observe that, except for the

case of 25 flows, FW always has a higher average data rate than FWR, as

FW can even admit flows that request more than 54 Mbps. In the case of

25 flows, we found that the total rate of all admitted flows for FW is higher
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than that of FWR. But, because FW admits more flows than FWR, the

ratio of the total rate to the number of admitted flows for FW turned out

to be slightly smaller than FWR. Next, we observe that VWC has a higher

data rate than VW, as VWC can accommodate more high rate flows by

switching channels than VW. This is also evident in the previous illustration

in Figure 5.4, where the total rate of admitted flows for VWC is 189 Mbps

and is just 162 Mbps for VW. Finally, we observe that the average data rate

decreases as the number of flows increases in the network, since the spectrum

available per flow decreases.

5.4.2 Effect of Percentage of Flows Requesting Lower Rates

Figure 5.6: Average number of accepted flows with different percentage of
low rate flows.

In the previous simulation scenario, the rate requirements for the flows are

selected uniformly at random from the possible data rates. Now, we study

the effect of varying the distribution of the rate requirements. For this we

generated 100 flows in the network, and varied the percentage of flows that

request a rate smaller than or equal to 54 Mbps (henceforth termed as low

rate flows) from 10 to 90 (in steps of 30). We observe from Figure 5.6 that

VW and VWC schemes admit more flows than FWR, when there are only
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10% of low rate flows in the network. However, this trend quickly changes

as evident from FWR admitting more flows starting from 30% case. The

FW scheme still admits more flows than any other scheme as it does not

guarantee the rate requirements. Finally, as more low rate flows are in the

network, the number of admitted flows in the case of FWR gets almost close

to that admitted in VW and VWC schemes, as seen in the plot for the 90%

case.

Figure 5.7: Average data rate of accepted flows with different percentage of
low rate flows.

The average data rate values shown in Figure 5.7. As expected, the VW

and VWC schemes have higher average data rates than the fixed schemes.

But, the average data rate values become almost the same for all the schemes

as the percentage of low rate flows approaches 90%.

5.4.3 Effect of Number of Nodes

In the next of simulations, we compare the performance of the protocols with

different number of nodes in the network. For this, we varied the number

of nodes in the network from 100 to 350 (in steps of 50). The area of the

network is held to be the same at 150 m x 150 m. We generated 100 flows

in each case, and the distribution of the rate requirement for the flows is left
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Figure 5.8: Average number of accepted flows with different number of
nodes.

to be uniform across the possible rate values. We observe from Figure 5.8

that the number of accepted flows increases only marginally as the number

of nodes increases. This is because the number of flows generated is 100 in

all the cases. We can also see from Figure 5.9 that the average data rate

increases with the number of nodes. Because the number of accepted flows

increases only marginally, as the number of nodes increases, more high rate

flows are accepted resulting in an increase in the average data rate. This can

be illustrated using the following scenario. Consider the case where there are

150 nodes distributed uniformly over the 150 m x 150 m area, and the case

where 300 nodes are distributed uniformly over the same area. For simplicity

of discussion, let us assume that the transmission regions are square (instead

of a circle). If we consider a transmission area of 30 m x 30 m (note that

30 m is the transmission range of the nodes), there are on an average 6 nodes

in this area for the 150 node case, and 12 nodes in this area for the 300 node

case. Note that there are twelve, 20 MHz channels, and a flow requiring

40 MHz of channel requires two 20 MHz channels. Therefore, for the same

number of accepted flows, the 300 node scenario can accept as many large

rate flows as the small rate flows accepted by the 150 node scenario (6 flows

in this example). This results in the 300 node case having a larger average

data rate than the 150 node case. However, there is no increase in data rate
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as the number of nodes increases beyond 300, (which can be observed from

the bars corresponding to 350 nodes) as the maximum number of number of

channels used is only 12.

Figure 5.9: Average data rate of accepted flows with different number of
nodes.

5.4.4 Effect of Number of Channels

In the final set of simulations, we vary the default spectrum width per chan-

nel, while keeping the total available spectrum constant at 240 MHz. This

will result in fewer than 12 channels when the width is greater than 20 MHz,

or more than 12 channels when the width is smaller than 20 MHz. The num-

ber of nodes in the network is set as 200, and we generated 100 flows with

their requirements distributed uniformly at random from the possible rate

values. We compared the performance of the protocols across per channel

spectrum widths of 5 MHz, 10 Mhz, 20 Mhz, and 40 Mhz. This results in

48, 24, 12, and 6 channels respectively. Because comparing the fixed width

schemes at a smaller channel width is unreasonable, we only compare the

variable width schemes in this simulation.

First, we observe from Figure 5.10 that the number of accepted flows de-

creases as the number of channels decreases (or as the per channel width
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Figure 5.10: Average number of accepted flows with different number of
channels.

increases). This is because more channels allow for more flexibility, allow-

ing for more flows to be admitted. However, we observe from Figure 5.11

that the average data rate increases as the per channel width increases, as a

wider channel allows more high rate flows to be admitted readily. However,

the data rate drops at 40 MHz channel width in the case of VWC. This is

because the behavior of VWC becomes similar to that of VW, in that a chan-

nel expansion is never performed (as the maximum allowed channel width

is limited to 40 MHz in our simulations). Therefore, the additional benefit

in data rate obtained by switching channels when required is not available

anymore.

We also attempted a simpler version of the channel width adaptation pro-

tocol with a distance-based propagation model that does not account for

interference between nodes. The protocol uses a different traffic model and

routing metric. We have summarized the protocol and the simulation results

for this variant in the Appendix A.
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Figure 5.11: Average data rate of accepted flows with different number of
channels.

5.5 Discussion

In this chapter, we explored the concept of variable width channel alloca-

tion in a multi-hop, multichannel wireless network to satisfy a flow’s rate

requirement. Such a scheme may be beneficial in a wireless sensor network,

where a sensor node can decide whether the available spectrum will be suf-

ficient to send an amount of data at a desired rate. We proposed a channel

width adaptation protocol executed during routing and studied its perfor-

mance using extensive simulations. Our simulations show that there can be

a significant throughput advantage in adopting a variable width channel allo-

cation scheme. Furthermore, our results show that determining the channels

dynamically, in addition to the channel widths, can be more beneficial.

While variable width channels are supported by present day wireless hard-

ware, there are some complexities that need to be considered while imple-

menting our protocol:

1. Our protocol requires that a source node has an estimate of the data

rate required by the flow to be routed. While some applications, such

as VoIP or video, may have this information as part of the protocol

headers, in general, additional mechanisms are needed for this estima-

tion.
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2. Every node in the network has to be aware of the channel and the width

used by its neighbors. Exchanging this information during routing

may incur route setup delay. Furthermore, broadcasting this informa-

tion periodically on channel and on all widths may result in additional

overhead.

3. Switching channels or changing channel widths may incur a non-negligible

delay, both at the hardware and software level. These delays should be

considered as part of the route setup time, which may require a more

sophisticated routing metric.

5.6 Future Work

Our simulation results in this section are intended to evaluate the potential

benefits of channel width adaptation. Future work can address many other

challenges. Here, we enumerate a few of them:

1. We assumed that a channel cannot be reused by any of the two hop

neighbors. This allows for the use of simple access protocols. However,

it will also be beneficial to study the performance of the protocols by

allowing for time sharing of the spectrum.

2. The routing metric we considered does not consider the effect of mul-

tiple channels. It may therefore be beneficial to analyze the protocols

using more sophisticated routing metrics, such as MCETT [12].

3. Finally, with the possibility of commodity hardware supporting variable

widths in the future, it may be beneficial to implement our protocols

on a testbed to measure the performance with real traffic.
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CHAPTER 6

CONCLUSION

In this thesis, we have presented a methodology for spectrum management

in multichannel wireless networks. Our approach deals with exploiting the

flexibilities either available in existing commodity hardware or expected in

future devices, with respect to adapting the spectrum widths dynamically.

We have developed channel allocation and routing protocols for dynami-

cally varying the widths based on traffic characteristics and demand. We

have also identified the practical difficulties that need to be addressed while

implementing the multichannel protocols with a perspective on minimizing

system latencies for real-time applications, and have presented algorithms

for addressing them. We now provide a brief chapter-level summary in the

following paragraphs.

In Chapter 3, we have proposed to partition a channel into a narrow and a

wide sub-channel for overcoming MAC overheads. The narrow sub-channel is

used for sending short packets and the wide channel is used for sending long

packets. We have proposed an algorithm called WiSP for determining the

channel partitions. We have studied the performance of our algorithm using

simulations and showed that our algorithm can provide significant improve-

ments even in cases where frame aggregation performs poorly. Furthermore,

we also show results where our mechanism can be used with frame aggre-

gation to obtain significant performance benefits. We have also presented

results for a multiple network scenario where the APs are allocated variable

width spectrum proportional to their client load, and show that our protocol

provides a performance that is better than just doing frame aggregation.

In Chapter 4, we proposed SHORT, a routing approach that exploits the

benefits of both static and hybrid channel allocation strategies. We have

implemented the protocol on a real multichannel testbed, and using experi-

mental data, we have demonstrated the performance benefits of the SHORT

protocol over a hybrid channel allocation protocol, called HMCP. All our
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experimental results illustrate the abilities of SHORT protocol in providing

low delay multihop paths for real-time traffic, while not significantly affect-

ing the throughputs of non real-time traffic. Our results show that the delay

performance of SHORT protocol is comparable to that of a static channel

allocation method.

In Chapter 5, we discussed a method for provisioning spectrum in a mul-

tichannel wireless network by adapting spectrum widths of wireless channels

depending on the traffic demand. We proposed a joint algorithm that per-

forms routing and channel resource allocation with the goal to maximize the

overall data rate of the admitted flows. Our algorithm uses a modified AODV

routing protocol to coordinate allocation decisions across wireless nodes. Us-

ing simulations, we evaluated the performance of our algorithm by comparing

it with other alternatives. Our results show that allocating both the chan-

nels and the channel widths dynamically during routing provides the best

performance in terms of the network wide data rate of the admitted flows.

The protocols proposed in this dissertation can be helpful in realizing a

system that can efficiently utilize the wireless resources.
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APPENDIX A

VARIABLE WIDTH CHANNEL
ALLOCATION WITH DISTANCE-BASED

PROPAGATION MODEL

Before evaluating the protocol proposed in Chapter 5, we evaluated another

version of the protocol with a different traffic model. This variant of the

protocol does not consider interference between nodes that are allocated the

same channel. We do, however, ensure that a channel does not overlap

with its neighboring channel when its width is expanded, as discussed in

Section 5.2.1. Here, we summarize the model and the simulation results of

this variant of the protocol.

A.1 Traffic Model

We consider two traffic classes in the network, namely real-time flows and

best-effort flows. Real-time flows are those that require end-to-end rate guar-

antees, and best-effort flows are those that do not require such guarantees.

Examples of real-time flows include VoIP, streaming video, interactive gam-

ing, etc. Traffic generated by web browsing, file transfer, and HTTP sessions

is classified as best-effort traffic. We assume that the rate requirements of the

real-time flows are known at the routing layer, which can later be converted

to an appropriate rate requirement. Any of the existing literature on esti-

mating the rate requirements of a flow can be used for this purpose [51, 52].

In this variant of the protocol, a node attempts to admit as many real-time

flows as possible such that their rate requirements are satisfied. To accom-

modate a real-time flow, a node performs an admission control mechanism

where it first checks to see if there is enough channel resource to accommo-

date the flow. If not, it checks to see if a channel width expansion is possible.

If the rate requirement of the real-time flow cannot still be satisfied, it drops

any of the best-effort flows that it is currently serving one after another until

there is enough spectrum to admit the flow. A real-time will not be admitted
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if its rate requirement cannot be satisfied even after dropping all the best-

effort flows. Note that our protocol does not guarantee the rate requirement

of the best-effort flows.

The objective of our protocol is to maximize the number of real-time flows

that are admitted while minimizing the number of best-effort flows dropped.

A.2 Protocol Architecture

Figure A.1: Proposed protocol architecture.

The protocol architecture is motivated by that in [43] and is modified to

accommodate multiple channels and variable channel widths. The protocol

architecture is shown in Figure A.1. When an incoming flow arrives at a

node (either source or an intermediate node), a packet classifier determines

whether it is a real-time or a best-effort flow. If it is a real time flow, the

packets go through an admission control mechanism. If not, the packets are

sent to a rate-control mechanism. The admission controller is responsible for

estimating the rate requirement of the flows and for deciding whether the

flow can be admitted based on the spectrum used by any of the the existing

flows (obtained from the routing table) and the channel widths used by the
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neighboring nodes (obtained from the interference estimation function in the

MAC layer). Once the real-time flows are admitted, the packets are marked

as real-time (by setting a flag) and are sent to the routing layer for route

selection. The transmission channel and the channel width to use (based on

the flow arrival) are also determined as part of the route selection process.

In the case of a best-effort flow, the rate controller chooses the maxi-

mum rate possible for the flows after discounting the spectrum used by any

real time flows in the channel. If there is no spectrum is available for the

best-effort flows (which can happen when entire available spectrum is being

utilized by real-time flows) at an intermediate node, the flow requests are

dropped (not shown in the figure). This is an attempt to ensure that the

real-time flows are not affected by a potential bandwidth hungry best-effort

flow (such as a large file transfer). An ongoing best-effort flow may also be

dropped (and the source informed of this), when a new incoming real-time

flow requires the channel. Whenever a best-effort flow is dropped, the source

is informed about this so that it can initiate a new route discovery for finding

an alternative route.

A.3 Proposed Mechanisms

In this section, we explain in detail the various components that form our

protocol architecture. We start with a discussion on the channel allocation

algorithm, followed by the routing protocol and the routing metric.

A.3.1 Channel Allocation Algorithm

We assume that five channel are available, with initial channel widths of

20 MHz. A channel width expansion is performed as explained in Chapter 5,

Section 5.2.1. The algorithm described here is a variant of our earlier work

discussed in [53]. We replicate the salient features of the algorithm from [53]

for completeness. The main difference here is that the channel usage in-

formation exchanged between the nodes contains the width of the channels

used by the nodes, in addition to their center frequencies. An IEEE 802.11a

MAC is assumed for explaining the algorithm in this section. However, the

algorithm itself is more general. The channel allocation algorithm decides
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the center frequencies of the channels and is run periodically at every node

in a distributed fashion. According to this algorithm, every fixed interface

at a node initially starts up on currChan, which is one of the K channels

used for allocation. The nodes then exchange their chosen channels (center

frequencies) and the spectrum usage of each of the channels, recvbwUsage,

with their one and two hop neighbors, neighList, using broadcast hello

messages. The spectrum utilization of a channel is essentially the amount

of channel spectrum used by a flow transmitted on that channel. Because

the nodes in the neighborhood may be listening on different channels and

widths, the broadcast of the hello has to be performed on all the channels

and possible widths (by switching the transmit radio on each of these chan-

nels and widths) to ensure that all the nodes in the neighborhood receive the

information. Every node, after receiving the broadcast messages, counts the

number of one and two hop neighbors that are assigned a particular channel,

denoted chanCount, and calculates the fraction of spectrum bandwidth used

on each of the channels, denoted bwUsage, from the recvbwUsage values in

the broadcast message. The nodes then calculate a weighted sum of the num-

ber of nodes using a particular channel as well as the fraction of spectrum

bandwidth used on each channel, called the ‘load’ on that channel, denoted

by load. The nodes also calculate the average, meanLoad load across all

the channels. A node then probabilistically (with a probability p) decides to

switch its channel if the load on the current channel, currChan, is at least

one above the meanLoad. The current channel is then switched to one of

the channels that has the minimum load, denoted by the list minChanList.

While picking the channel to switch from minChanList, our algorithm at-

tempts to pick the spectrally farthest channel, maxDistChan, from the ones

that are in use by its neighbors. This is done to allow for future channel

expansions when needed. The spectral distance of a channel i, is given by

distancei =

√√√√ ∑
j∈neighChannels,

j 6=i

(i− j)2, ∀i ∈ K (A.1)

where neighChannels is the set of channels assigned to the one and two

hop neighbors of a node and K is the set of all channels that are con-

sidered for allocation. The spectrally farthest channel i is then given by

arg max
i
{distancei}. The channel allocation and selection algorithms are
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shown in Algorithm 2.

A.3.2 Routing Metric

The routing metric used by our approach is a variant of the multichannel rout-

ing metric (MCR) [10] and the expected transmission time (ETT) metric [35].

The ETT, in seconds, is specified per link and is given by ETT = ETX ∗ S
D

,

where ETX [35] is the expected number of transmission attempts (including

retransmissions) required for transmitting a packet, S is the average packet

size, and D is the data rate of the link. The data rate D of the link depends

on the channel width chosen on that link. The proposed routing metric

combines the ETT metric with the hardware delay involved in switching

the channel, namely Csw, and the delay involved in adapting the channel

width, namely Cbw. Additionally, we associate two penalty metrics, Cdrop

and Cdemand. Cdrop is the number of best-effort flows to be dropped for ad-

mitting a real-time flow, and Cdemand is called the demand factor, which is

used to keep track of number of route requests that a node received over a

certain duration of time. The details of these two penalty metrics are dis-

cussed in Sections A.3.4 and A.3.5. If ci is the channel used in the i-th hop of

route and wi is the corresponding channel width used, the end-to-end rout-

ing metric for a path involving h hops, namely QOSAR (QoS-based ad-hoc

routing metric) is given by

QOSAR =
h∑
i=1

[ETT (i) + Csw(i) + Cbw(i) + Cdrop(i) + Cdemand(i)]

In their definition of the MCR metric, the authors of [10] introduce a factor

for the interference in the network. We ignore that factor in our definition

for simplicity.

A.3.3 Routing Protocol

We modify the popular AODV routing protocol [11] for determining the

routes based on the rate requirements of the flows. As mentioned in Sec-

tion A.1 we assume that we can estimate the rate requirement of the flows
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Algorithm 2 Channel allocation algorithm.

ChanAlloc(currChan, K, neighList):
1. for i in K

2. chanCount[i]← 0
3. bwUsage[i]← 0
4. end for
5. for neigh in neighList

6. chanCount[neigh→ channel] + +
7. bwUsage[neigh→ channel]←
8. bwUsage[neigh→ channel] + recvbwUsage[neigh]
9. //recvbwUsage[j] is the received bandwidth usage from neighbor j
10. end for
11. sumLoad← 0
12. for j in K

13. load[j]← chanCount[j] ∗ bwUsage[j]
14. sumLoad← sumLoad+ load[j])
15. end for
16. meanLoad← sumLoad/K
17. if(load[currChan] ≥ meanLoad+ 1)
18. With probability p = 1

chanCount[currChan]

19. // create list, minChanList of channels that have the minLoad
20. currChan← ChanSelect(minChanList, neighList)
21. end if
22. return currChan

ChanSelect(minchanList,neighList):
1. for i in minchanList

2. sumDist← 0
3. for neigh in neighList

4. sumDist← sumDist+ [i− (neigh→ channel)]2

5. end for
6. distance[i]←

√
sumDist

7. end for
8. maxDistChan← max

i
{distance[i]},∀i ∈ minChanList

9. return maxDistChan
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from its traffic pattern using existing techniques in the literature, such as [51,

52]. We also assume that the rate requirement is known at the routing layer,

which can be converted into the actual channel width required to satisfy the

rate requirement. The routing protocol described here is common to both

real-time and best-effort flows. The steps involved in routing a flow are as

follows:

1. The source node constructs a ‘route request’ (RREQ) message contain-

ing the destination node’s IP address. For real-time flows, the source

node sets a special flag, isRealT ime to TRUE and includes the rate

required for the flow. The source then broadcasts the RREQ message

on all channels and widths.

2. Every intermediate node receiving the RREQ checks the isRealT ime

flag. If it is set, then it performs admission control (see Section A.3.4).

If the flow is not admitted (i.e., the rate requirement of the flow cannot

be satisfied by this node), then the node just drops the RREQ message.

If the real-time flow is admitted, then the node adds the following costs

to the RREQ message as part of the routing metric discussed earlier in

Section A.3.2:

• The ETT for every outgoing channel.

• The cost for switching the channel, Csw for each channel.

• The cost to adjust the channel widths, Cbw for each channel.

• The penalty metrics, Cdrop and Cdemand for each channel.

The node then broadcasts the RREQ message (on all channels). In

case of a best-effort flow, the nodes do not add the penalty metrics.

3. The destination node, upon receiving the RREQ messages (note that

the destination node may receive multiple RREQs), compares the rout-

ing metrics across the received messages and generates a ‘route re-

sponse’ (RREP) message for the route that has the least metric.

4. The destination node may choose to respond to multiple RREQ mes-

sages if a newly received RREQ has a smaller metric than the one for

which it may have replied earlier.
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5. The RREP message is forwarded to the source along the path used by

the corresponding RREQ. The intermediate nodes also add a routing

table entry for the flow. Additionally, if it is a real-time flow, the

intermediate nodes check if any best-effort flow has to be dropped, as

discussed in Section A.3.4.

A.3.4 Admission Control Mechanism

The proposed admission control mechanism is executed at a node to deter-

mine whether or not the rate requirement of an incoming flow can be satisfied

on any of the links. In the discussion that follows, the available channel spec-

trum at a node is computed based on the amount of spectrum used by the

neighbors, and the amount of spectrum used by any existing flows in the

node. The available spectrum information of the neighbors can be obtained

by exchanging, periodically the channel widths with the neighbors. Because

there is no rate requirement associated with a best-effort flow, a node dis-

counts 5 MHz (which is the smallest allowed channel width in our protocol)

from its available spectrum for every best-effort flow that it is currently ser-

vicing.

The pseudocode for the admission control mechanism is shown below. If

the available spectrum can satisfy the requirement of the incoming flow, then

the new flow is admitted. If not, the node marks any best-effort flows, that

are currently serviced, for dropping one after another (in some random order)

and adds 5 Mhz to the available spectrum for every best-effort flow marked.

Thus, the available spectrum in the Step 2 of the pseudocode below is the

spectrum that will be available if the marked best-effort flows are eventually

dropped. This is repeated until the available spectrum becomes sufficient for

the new flow. If there is not sufficient spectrum even after all the best-effort

flows are marked for dropping, the incoming flow is rejected (and the best-

effort flows that were previously marked are unmarked). Otherwise, the flow

is accepted and the marked best-effort flows are dropped.

At a node with an incoming flow,

1. If available spectrum ≤ required spectrum

2. Repeat until all best-effort flows are dropped:

Mark a best-effort flow for dropping
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If available spectrum ≥ required spectrum

Drop all the marked best-effort flows

Admit the flow

Exit

end repeat

3. Reject the flow

Unmark all the marked best-effort flows

Admitting a flow at a node by itself may not guarantee that the flow will

be eventually sent through this node. The decision on whether or not a node

is chosen for forwarding a flow depends on the routing protocol used.

A.3.5 Note on Demand Factor

We will now explain how the demand factor in the QOSAR metric is used

for congestion control. Consider that a certain node, say node A, receives a

RREQ with a rate requirement bf1 for a flow f1. Let the available spectrum

at node A be ba and let bf1 < ba. Node A will therefore broadcast the

RREQ message along with spectrum ba and other costs. Before this response

propagates to the source of this flow, let us assume that another request

arrives at A from a different source requiring a spectrum of bf2 < ba for

a flow f2. In this case, node A can either choose not to rebroadcast the

RREP as it has already responded with its available spectrum for the flow

f1, or it can respond with a spectrum that is smaller than ba. However,

flow f1 may not choose the route via node A. If f1 did not choose the route

via A, then dropping the RREP for f2, or advertising a smaller available

spectrum to f2 may result in the flow f2 not using the route via node A. As

a result, a potentially usable route may end up being unused. To overcome

such a situation, we propose to attach a demand factor, Cdemand, to the

routing responses, which is simply the number of routing requests at a node.

Therefore, in the example above node A responds with the same spectrum

ba for the flow f2, but includes a Cdemand value that is incremented by 1 to

account for the flow f1. Because a node having a high demand factor can be

a potential bottleneck node, including the demand factor information in the

routing metric can help reduce, to some extent, the chance of multiple flows

being routed through the same node.
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A.4 Simulation Results

In this section we start by giving an overview of our simulation methodology

in Section A.4.1, and then describe performance results in Section A.4.2.

A.4.1 Simulation Model

Figure A.2: Probability of successful packet reception as a function of
distance and power.

In our event-driven simulations, we place 2500 nodes distributed randomly

on a 150 m × 150 m area. The transmission range of the nodes is fixed at

30 m. Every node is equipped with two radios of which one is used for trans-

mitting data and the other is used for receiving data. For modeling the link

layer we have used the propagation model from [54], which is based on real

world experiments. This model defines the network topology by associating

with every link a probability value, which decides whether a transmission

on that particular link will be successful or not. This is decided based on a

coin toss for every packet sent on a link (including broadcast packets such

as those used for route discovery). The probability values are defined as a

function of distance and transmission power. We have shown this model in

Figure A.2. The plot shows that the probability of successful packet reception

decreases as the distance from the packet source increases. Furthermore, the
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plot shows that the probability of successful reception of a packet improves

as we increase the transmit power.

The real-time flows are introduced into the network at a rate modeled by

a Poisson distribution of rate λ arrivals per second. The value of λ is varied

from 0.02 to 0.1 arrivals per second in steps of 0.2 arrivals per second, and

further from 0.2 to 1.0 arrivals per second in steps of 0.02 arrivals per second.

Each of these flows are assumed to have a rate requirement, which is chosen

uniformly at random from a set of five possible values, namely {13.5 Mbps,

27 Mbps, 54 Mbps, 81 Mbps, 108 Mbps}. Each of the five channels can be

tuned to any of the following five channel widths: {5 Mhz, 10 MHz, 20 MHz,

30 MHz, 40 MHz}. The nodes are allocated channels chosen uniformly at

random from the five channels before the start of the simulation. The nodes

are also allocated a certain number of best-effort flows before the start of the

simulation. The number of best-effort flows in a node is chosen uniformly

at random between 1 and 5. Each of the best-effort flows is assumed to

consume 5 Mhz worth of spectrum. Accordingly, the initial channel widths

of the nodes are adjusted based on the number of best-effort flows. Thus,

a node with just a one best-effort flow will have a width of 5 MHz, while

the node with 5 best-effort flows will be using a channel width of 5 × 5 =

25 MHz.

We assume that the network, traffic, and propagation characteristics are

static for the period of the simulation. For each of the offered load charac-

terized by the arrival rate λ, we run 100 randomly generated networks with

the given parameters. The performance results presented are averaged across

all the flows and all the 100 network realizations. For each of the runs, we

compare the performance of our proposed approach based on the modified

AODV protocol using the QOSAR metric and a greedy approach, which is

also a modified version of the AODV protocol described below. First, a list of

potential routes between the source and destination is formed. This is done

using a centralized algorithm knowing the source and destination locations,

and the location of all the other nodes. Using this information we create the

list of nodes that are located between the source and destination, and com-

pute the set of all possible routes through these nodes. Then the route with

the best ETT is picked from the list of potential routes using the following

steps: the source node and every subsequent node that receives an RREQ,

instead of broadcasting the RREQ, unicasts the message to the neighbor
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(chosen from the nodes in the potential routes) with the minimum ETT and

chooses that neighbor as the next hop. If the neighbor of a node is the des-

tination, then the node simply forwards the RREQ to the destination. The

destination node then sends back an RREP, which is forwarded all the way

to the source node, to inform the source node that the route to destination

exists. The source node re-sends an RREQ message to the neighbor with

the next best ETT, if there is no RREP received within a certain duration

of time. Thus in this approach, the route is decided locally at every node,

based on the local ETT values, instead of the destination node.

A.4.2 Performance Results

Figure A.3: Average number of real-time flows admitted.

We now discuss the various performance results obtained through simula-

tions. We first plot the number of admitted flows in the network. Figure A.3

compares the number of admitted real-time flows for the greedy and the pro-

posed algorithms. We observe that the difference in the number of admitted

flows between our proposed approach and the greedy approach increases as

the offered load increases. This shows that fewer flows are admitted in the

network in the greedy approach.

Next, we compare the average transmission rate achieved per flow in the

network. Figure A.4 shows the plots for the rates achieved per flow for the

two algorithms. We can observe from that plot that our proposed algorithm

can achieve higher rate than the greedy algorithm approach. For instance,
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Figure A.4: Average rate achieved per flow.

the rate achieved per flow at an offered load of 0.1 is around 25.2 Mbps in the

case of greedy approach, while it is 46.2 Mbps for our proposed approach.

Next, we compare our approach with the greedy approach as the network

density is varied. For this purpose, we fix the network size as a 150m × 150m

square as before and the offered load to be 0.1 arrivals per second. However,

we vary the number of nodes in the network from 1000 to 5000.

Figure A.5: Average rate achieved per flow as a function of network density.
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We plot the rates achieved by the two approaches in Figure A.5 for the

various network densities. As before, our approach achieves better average

rate than the greedy approach.

A.5 Discussion

In this appendix, we presented a variable width channel allocation algorithm

for a simpler propagation model. Our protocol uses the rate requirement of

the real-time flows to estimate the required spectrum. During routing, every

node decides on whether the real-time flows can be admitted or not base

on the spectrum availability. Furthermore, the nodes attempt to admit a

real-time flow by dropping any existing best-effort flows that it is currently

servicing. Using simple simulations we show that our approach can admit

more real-time flows and provide higher data rates for the admitted flows,

compared to a greedy approach.

The network model used in our evaluations is simplistic, as we did not

consider interference between the nodes that are allocated the same channel.

Furthermore, we used a distance-based propagation model to determine if

a packet can be received by a node or not. However, the results obtained

in this appendix provided valuable insights in understanding the capabilities

of channel width adaptation. For instance, our simulations suggest that

more flows that request higher data rates can be admitted by adapting the

channel widths. Furthermore, our results suggest that a scheme that chooses

the route with a global knowledge of the network can be beneficial than a

scheme that greedily decides the route based on local information. With this

understanding, we have improved our protocol to incorporate joint routing

and channel resource allocation, as presented in Chapter 5. Additionally,

for the evaluations presented in Chapter 5 we have used a FDMA-based

channel allocation and an improved interference model, which overcomes the

shortcomings of the simulations in this appendix. Finally, in Chapter 5, we

have compared our protocol with a variety of other alternative approaches.
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